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Abstract. Bayesian modeling of cognitive state is one possible approach
to user modeling for use with adaptivity in serious games. Adaptive edu-
cational serious games try to keep learners engaged - to keep them in the
so called “Flow” channel, i.e., in the right balance between being chal-
lenged and entertained. The challenge is to intervene adaptively at the
right time. The research question is when to actually adapt, and how to
find quantifiable metrics for that. One way to achieve this is to model
the users’ cognitive state and to adapt to high or low cognitive load, e.g.,
to apply dynamic difficulty adjustments. Our user modeling approach
is based on Hierarchical Bayesian Models (HBM) which are suitable for
drawing conclusions about the learner’s cognitive state inferred from ob-
servable variables. An important aspect is that the approach considers
activity stream data such as from the Experience API (xAPI) proto-
col as input to achieve high interoperability and eased applicability. An
evaluation with synthetic data for different user group types shows the
feasibility of the approach. The model can explain differences between
subjects, between subject groups and between different latent variables
such as cognitive load or mental working memory capacity.

Keywords: user modeling, cognitive modeling, learner state, adaptivity,
serious games, Bayesian inference

1 Introduction

A key question for an adaptive education system (AES [15]) is when adaptability
should occur, that is, at what point a learner should be best supported. This
also concerns serious games, i.e., (digital) games with the characterizing goal
to educate and not just to entertain [5,9]. The challenge is to infer the needs
of the users by observing how the users interact with the systems. AES could
try to determine the cognitive states of the users to trigger the right adaptive
responses [14,20]. For example, an adaptive educational system could react when
attention decreases, cognitive load increases [14], or when the user seems to be
in a repetitive cycle with no real observable progress, or when there are signs
of forgetting. Cognitive modeling can provide answers to these questions by
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focusing on user modeling [14,20]. The principal part of an adaptive system for
educational serious games is the user or student model [19] which can include
information about the learners’ current cognitive states, e.g., cognitive load or
stress level, motivation, attention, etc. The model’s estimate of the learner’s
current cognitive state can be used to derive and suggest adaptive measures to
help navigating the player through the game on a smooth and engaging path.

The research question of this work is how to create a cognitive user model
which allows to estimate latent cognitive variables such as cognitive load, per-
ceived difficulty, or prior knowledge level. Subsequently, AES can use such a
model to determine the best time for an adaptive response.

OutputInput Process
User interactions, e.g., in serious game Bayesian data analysis

Hierarchical Bayesian models Learner's current cognitive state

xAPI Probability distributions

Bayesian inference

Fig. 1: Input-Processing-Output (IPO) concept for applying generative Bayes
models to user models; output are probabilities about user cognitive states.

The contribution of this work is a concept for a cognitive user model which
is based on Hierarchical Bayesian Models (HBM). The model makes use of the
Cognitive Load Theory (CLT) [17] to describe the relationship between the char-
acteristics of the learner and the characteristics of the learning material. The
model has been validated numerically using synthetic data. A detailed model
comparison was conducted to obtain the best model. The final model is able to
explain the three observable variables task success, mission score and mission
time. In our technical evaluation with synthetic data it can accurately predict
those variables with an accuracy of over 90% (mean absolute deviation).

As depicted in Fig. 1, input to the model are activity stream data formatted
according to the Experience API (xAPI) protocol [1]. This allows for increased
interoperability and applicability to other application domains. The xAPI speci-
fies how to capture user interaction events as a stream of activities. Every activ-
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ity is based on an actor-verb-object triple structure, with additional information
such as timestamps, context data or the result outcome of an activity, e.g., an
assessment result score. This leads to a machine- and human-readable stream of
activities. We make use of xAPI as input for our modeling approach.

The model’s output are probability distributions that allow for inferences
about the model’s parameters and provide the uncertainty associated with those
inferences.

To the best of our knowledge, this is the first application of a HBM for
realizing cognitive user models for adaptive serious games. Several issues with
the final model have been identified and provide directions for further research.

2 Related Work

Seyderhelm et al. (2019) propose a Cognitive Adaptive Serious Game Framework
(CASG-F), routed in the cognitive-affective theory of learning with media, that
combines performance measures and cognitive load to adapt the in-game tasks
[14]. They suggest using a real-time, virtual detection-response task embedded
in serious games to measure cognitive load and provide an adaptation template
for six different combinations of performance and cognitive load measures [14].

Conati et al. (2020) investigated the usage of interaction data as an infor-
mation source to predict cognitive abilities [3]. In a user study, they compared
the predictive performance for cognitive abilities using only interaction data,
eye-tracking data and both interaction and eye-tracking data. The researched
cognitive abilities were perceptual speed, visual working memory, spatial mem-
ory, visual scanning, and visualization literacy. To measure the cognitive abilities,
the participants had to take a series of tests after completing the actual task.
While eye-tracking data generated the most accurate predictions, results showed
that interaction data can still outperform a majority-class baseline. Addition-
ally, it was found that interaction data can predict several cognitive abilities with
better accuracy at the very beginning of the task than eye-tracking data, which
is valuable for delivering adaptation early in the task. Left click rate and time
to first click were the top two predictors for all cognitive abilities, suggesting the
importance of those two features for predicting cognitive abilities. Conati et al.
(2020) concluded that adaptation for interactive visualizations tasks could be
enabled using solely interaction data [3].

Hallifax et al. (2020) analyzed the effect of combining several learner models
to guide the adaptation strategy. They showed that adaptation is more effective
when tailored to both player type and motivation, which could improve the
intrinsic motivation to engage with the content [8].

Tadlaoui et al. (2018) realized a probabilistic and dynamic learner model in
adaptive hypermedia educational systems based on multi-entity Bayesian net-
works [18]. The model can represent the different actions that the learner can
take during their learning path.

One classical example of using dynamic Bayesian networks to model the
causes and effects of emotional reactions was given by Conati and Maclaren
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(2009) [4]. Their diagnostic model targets affect and how emotions are caused
by the users’ appraisal in a given context, e.g., for goals or preferences.

Gelman et al. (2013) state that checking the model is crucial to statistical
analysis [7]. Bayesian prior-to-posterior inferences assume the whole structure
of a probability model and can yield misleading inferences when the model is
poor [7]. Therefore, good Bayesian analysis should include at least some check
of the adequacy of the model’s fit to the data and the model’s plausibility for
the purposes for which the model will be used. The most common way to check
the fit of a model is by performing a posterior predictive check — as it was also
done here. Posterior predictive distribution denotes a probability distribution
over possible values of future data [11].
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Fig. 2: Application principle for cognitive user models applied to (educational)
serious games to estimate various cognitive variables as control input for adap-
tivity, e.g., adaptive feedback or scenario changes. (Image: Aydinbas 2019 [2])

3 Concept For a Cognitive User Model

A cognitive user or learner model [19] is a model that can make statements about
the learner’s cognitive state, that is, statements about their mental actions and
processes that deal with knowledge acquisition and understanding. In the adap-
tive cycle by Shute et al. (2012) the learner model builds a connection between
the captured user data and the presented learning material that is suitable for
the learner [15]. The learner model should allow for a dynamic assessment of the
learner’s current cognitive state [3]. The model’s knowledge about the learner
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can be leveraged to guide the player through the problem space towards a goal
state while avoiding states that are detrimental for the player (e.g., [8,18]).

Fig. 2 depicts the idea how to apply cognitive modeling to serious games [2].
On the left is an outline of the user’s cognitive states and how it develops while
playing a game towards a goal state. As shown on the right, cognitive modeling
tries to simulate that with a cognitive user model — the model tries to estimate
various cognitive variables as input to adaptive control, e.g., adaptive feedback
or scenario changes. This again results in an interaction between the user and
the AES (as in a closed-loop feedback adaptive control).

3.1 Observable Variables

To work with Bayesian models, it is required to define the relevant observable
data, the involved measurement scales of the data and the definition of variables
that are to be predicted and variables that are predictors. For transferability
reasons, and without loss of generality, we selected a variable set as found in most
serious games. Three categories of observable variables were identified: general
performance measures, domain-specific measures, and game-specific measures
(Table 1). This can act as a framework for observable variables in serious games.

Table 1: Examples of xAPI observable variables in serious games.
Name Level Variable Type Unit Domain

task success performance k binary - {0, 1}
mission score performance s discrete - N0

mission time performance t continuous minutes/seconds R≥0

required rounds domain nrnd discrete - N
required hints domain nhnt discrete - N0

location changes domain nloc discrete - N0

dialogues domain ndia discrete - N0

detours game ndet discrete - N0

General performance measures are mostly domain-independent and can be
measured in any application. Games typically report on these measures in an
assessment stage, e.g., at the end of a mission or task.
Task success k describes the success of a player for a given task and is either
true or false. As an example, in an image interpretation serious game, a task or
objective is the correct deployment of an imaging sensor, which can fail if the
player has not correctly considered the actual weather conditions or has exceeded
the number of rounds available for the mission.
Mission score s is the overall score of the player for the given mission, but is
also applicable to any game and any learning task because it is a simple accuracy
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measure that reflects the number of errors the player made. As an example, this
number lies between zero and the maximal number of items the player had to
report for a given mission, and typically it is normalized in [0; 1] to be comparable
across missions and across different applications.
Mission time t is the amount of time it took the player to finish the mission, but
is applicable to any domain or learning task by measuring the time the learner
needs to finish a given task.

Domain measures are domain-dependent, but applicable to any similar game
of that domain that supports this feature. For example, strategy games use
resources of some kind and turn-based games have a measure of rounds. Game
measures are the most specific of all variables because they only apply to a
particular game and are normally not transferable to other games or applications
without reinterpretation. One example of a game measure variable might be
detours which captures the number of detours the player has taken during the
mission compared to an ideal solution where the player knows exactly what the
next steps are and where to go.

3.2 Cognitive User Models For Serious Games

Instead of cognitive modeling frameworks such as Soar 9 [10], which demands a
lot of domain and task modeling effort but cannot directly offer inferences about
the cognitive state of the learner, we decided to choose a different approach:
to build a probabilistic statistical model of the data that only specifies what
is really needed for the user modeling task. The Bayesian modeling approach
allows for maximal control and flexibility as the model can be as general or as
complex as needed. Bayesian models are directly built in a way to infer the state
of latent, non-observable variables from observable variables.

After the user has finished a game (or any other learning) session, either suc-
cessfully or with failure, the collected data is analyzed by the HBM. The model
takes predefined prior distributions for each model parameter and the observa-
tions as input and calculates (via Bayesian inference) the posterior distributions
for all parameters. The latent parameters are variables that can be interpreted
as cognitive variables such as motivation or the perceived difficulty.

Because the model produces posterior distributions, which are probability
densities, the model gives directly interpretable probabilities as output. It is
straight forward to derive point estimates such as mean and mode values as
well as highest density intervals from the posterior distributions. At the end of
each session, the model can infer the learner’s current cognitive state and make
statements about their current value with an estimate of uncertainty. Because
the posterior is a probability density, it can be reused in another run of Bayesian
inference as the prior, replacing the old, non-informative prior with the model’s
latest belief according to the observed data. This is identical to the prediction-
correction step in Bayesian filtering methods, and the principle is depicted in
Fig. 3. During each mission the player executes a series of actions, which takes
time t. At the end of each mission all user interactions are send to the cognitive
user model framework in form of xAPI statements. The framework is given prior
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distributions for each model parameter and observable data as input and pro-
duces, via Bayesian inference, posterior distributions for each model parameter.
This posterior distribution is the base for the computation of point estimates.
The posterior of one mission can also serve as the prior for another mission.
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Fig. 3: Realizing a “Cognitive Intelligent User Model” (CogIUM) with HBM.
After each round, task or mission, the model’s inferences can be used to adapt
the game according to the learner’s needs, e.g., adjusting the difficulty level.

3.3 A Hierarchical Bayesian User Model

Our final model (Fig. 4) is a fully specified descriptive HBM that is able to model
the three observable variables task success, mission score and mission time [2].

The model defines variables for two separate groups (depicted by rectangles):
personal variables (indexed with p) that differ between subjects and conceptual
variables (indexed with c) that differ between concepts. Concept in this context
means a learning concept that the learner should acquire. In addition to group
variables, which remain constant within the group, there are also variables that
differ between subjects as well as between concepts (indexed with pc). This is
the case for the observable variables, as they depend both on the current concept
as well as on the current subject.
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Fig. 4: Simplified graphical model of the best performing HBM (notation accord-
ing to [6]). The fully specified descriptive model is described in [2] as M4.

The HBM models the cause of three observable variables: task success kpc,
mission score spc, and mission time tpc. The latent variables (highlighted in blue)
that serve as proxies for cognitive variables - which are the primary focus of the
cognitive model - include motivation mp, prior knowledge ψp, germane cognitive
load glcpc, and free working memory capacity δpc.

Besides the observable variables (Fig. 4, gray nodes), all other variables are
considered latent and can be the target of inference. Especially, we are interested
in variables that can be interpreted as cognitive variables and allow inference
about the learner’s cognitive state (Fig. 4, blue nodes).

The basic idea of this descriptive model is that cognitive load affects learner
performance, which in turn has a direct impact on the observable variables.
Higher cognitive load often means an increase in the number of errors, and thus
a decrease in performance [12]. Cognitive load is purely defined by the sum of
intrinsic and extraneous cognitive load [16]. Germane cognitive load is the pro-
portion of working memory resources that deals with intrinsic cognitive load.
Higher extraneous cognitive load means less germane cognitive load, which re-
duces learning and which can be measured by a decrease in the learner’s perfor-
mance [16]. For example, if the model observes that two different people perform
differently when learning the same concept, it can attribute the differences to
individual differences in cognitive load and free working memory capacity, which
in turn are influenced by the learner’s motivation and prior knowledge.
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4 Evaluation

To validate the fitness and performance of our models, we generated 14 synthetic
data sets [2]. Each data set contains plausible observations for a different number
of subjects and missions (called concept). Participants were divided into groups
of different “skills”. There were three groups in total:

1. “good”: a subject successfully completes the task, has a high mission score
and a short mission time.

2. “average”: a subject has a random chance to succeed in the task, and both
has an average mission score and an average mission time.

3. “bad”: a subject always fails the task, has a low mission score and a long
mission time.

The data sets differ with respect to the number of subjects, the number of
concepts, the number of groups, and how the subjects are divided among the
groups. With the help of Bayesian inference, the model re-allocates credibility
across parameter values to best explain the observations of each data set.

Comparing models is especially important since it is typically the case that
more than one reasonable probability model can provide an adequate fit to the
data in a scientific problem. A popular metric to quantify predictive performance
is the Mean Squared Error (MSE) [13].

The best model was able to explain individual differences with more than
90% accuracy for the three observable variables task success, mission score and
mission time.

In Table 2 we report the Mean Absolute Deviation (MAD), the Mean of
the Squared Deviations (MSE), the average standard deviation (SD) and the
accuracy (ACC). We define accuracy by comparing the MAD estimate with the
maximum upper limit, in our case the maximum error of each variable: 1) task
success is binary-valued {0, 1} hence the maximum error is 1; 2) mission score
is in [0; 1] hence the maximum error is 1. Mission time can be any value greater
zero, but we limited the session to 5 minutes. Table 2 shows that, on average,
task success is reproduced 100% correctly for all subjects, mission score 98.9%
and mission time 92.7%.

Table 2: Measures of predictive precision and predictive accuracy for the best
model for a single simulated data set. Pi stands for the posterior predictive
distribution of the i-th observation.
Observable Variable MAD SDMAD MSE SDMSE ACCMAD SD

task success 0.0 0.0 - - 1.0 0.46
mission score 0.011 0.011 0.001 0.001 0.989 0.107
mission time 0.366 0.203 0.427 0.445 0.927 1.963

MAD = 1
n

∑
|yi − P̃i|; MSE = 1

n

∑
(yi − P̄i)

2; ACC = 1 − MAD
max. Error ; SD = 1

n

∑
σPi
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Fig. 5: Comparison between individual observations created by the model and
the true observations (marked by a star) for mission score spc. The simulated
data set includes 50 subjects, divided into three groups (good, average, bad).
The model’s predictions are based on samples drawn from the model’s posterior
predictive distribution.
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As an example, Fig. 5 and Fig. 6 show the results of a posterior predictive
graphical check for the observable variable mission score for n = 50 subjects di-
vided into the three distinct groups. The model is able to reproduce the observed
individual scores accurately, and the posterior predictive mean curve is close to
the observation curve.

The model works best for one concept. More than one concept becomes
challenging for the final model and the model’s performance decreases with an
increased number of concepts. However, this behavior is expected as the HBM
is primarily designed to explain individual differences and has not the ability to
vary personal variables between concepts.

5 Conclusion & Outlook

Adaptive educational serious games try to continuously motivate players by dy-
namically adjusting the usage experience according to the users’ cognitive states,
e.g., according to the estimated free working memory or motivation. Cognitive
user models can capture cognitive variables such as cognitive load, motivation,
attention, etc. Adaptive systems can make use of such models to determine a
good point in time when to actually adapt, e.g., a threshold on the cognitive load
measure to control the displayed information scope, or to dynamically adjust the
difficulty level. The research question is how to create a cognitive user model to
estimate latent cognitive variables such as cognitive load or free mental work-
ing memory capacity. We have presented a concept for a cognitive user model
which is based on Hierarchical Bayesian Models (HBM). The model has been
validated numerically using synthetic data. The final model is able to explain
the three observable variables task success, mission score and mission time with
an accuracy of over 90%. The generic structure of the modeling approach allows
transferability to other application fields.

Several issues with the final model have been identified and provide directions
for further research. The presented results are based on simulated data, not on
empirical data, hence, an evaluation by a user study is the next logical step.
Further work could also incorporate more observable variables, e.g., data from
eye-tracking or physiological sensors.
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