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Abstract. The topic of this contribution is characterization and analysis of assis-

tance systems in order to enable adaptivity, i.e., as personalized adaptive systems. 

The research question of this article is how to facilitate the modeling efforts in 

adaptive e-learning assistance systems. Adaptivity here means to personalize the 

usage experience to the individual needs of the users and their current working 

context. For that, adaptive systems need usage models and user models. The prob-

lem statement is that expert knowledge and recurrent efforts are needed to create 

and update these types of models. Data driven and graph analytics approaches 

can help here, in particular when looking at standardized interaction data and 

models which encode sequences such as interaction paths or learning paths. This 

article studies how to make use of interaction usage data to create sequence-typed 

domain and user models for their use in adaptive assistance systems. The main 

contribution of this work is an innovative concept and implementation framework 

to dynamically create Ideal Paths Models (IPM) as reference models for adaptive 

control in adaptive assistance systems. 
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1 Introduction 

Assistance systems can support users to achieve their tasks [1, 2]. An intelligent assis-

tance system observes the users’ interactions and automatically adapts to the users’ 

needs and their working context [2]. This is, it could change the way the users can 

interact with the system, or by providing context-sensitive support, e.g., context-related 

recommendations such as learning help in intelligent tutoring systems [1, 3]. 

This paper presents how to characterize and analyze assistance systems to enable 

adaptivity, hence forming personalized adaptive systems. The research question of this 
work is how to facilitate the modeling efforts in adaptive e-learning assistance systems: 

adaptivity in this article means to personalize the usage experience to the individual 

needs of a user and his current working context. For example, in adaptive e-learning 

the systems can provide the users with adaptive guidance or make dynamic difficulty 

                                                        
 

 



adjustments, i.e., making it easier or more challenging. Adaptive guidance could be 

recommendations on the next best activity following (individual) learning paths [2]. 

However, adaptivity components in personalized assistance systems need user and do-

main models to determine the next best course of action. User models typically contain 

information on how, when and what a user has interacted with, or – for a cognitive user 
model – information on the cognitive state or load (e.g., stress level). The domain mod-

els can be interaction paths or, in e-learning, assessment questions or learning paths [2]. 

The problem statement is that expert knowledge and recurrent efforts are needed to 

create and update such kind of models. Data driven and graph analytics approaches may 

help here, especially when looking at interaction data and models which encode se-

quences such as usage paths. This article studies how to make use of interaction usage 

data to create sequence-typed domain and user models for their use in adaptive assis-

tance systems. These models contain information on the general usage of the attached 

systems (domain model) as well as the individual interactions of single users (user 

model). The concrete research questions studies to create dynamically adjustable and 

flexible user and usage path models, and how to analyze the models for their application 

in adaptive control. This contributes to one of the main questions in adaptive assistance: 
when to actually adapt.  

The contribution of this work is a concept and implementation framework to dynam-

ically create Ideal Paths Models (Fig. 1) [4] as reference models for adaptive control in 

adaptive assistance systems. Our graph-based modeling approach links the IPM to do-

main and user models. The concept shows how to define graph-based IPMs, and how 

to apply them to quantify user performance. The framework presents a software archi-

tecture which uses standard-based activity stream tracking data to generate IPMs. 

Our field of application is assistance systems for education and training, in particular 

e-learning for image interpretation [4]. Our adaptivity approach tries to keep the users 

immersed in gamified interactive learning environment (so called serious games [5]) 

by keeping them in the so-called Flow channel [6], balanced between the perceived 
skills and challenges. 

This article concentrates on the modeling aspects of usage pathways which encode 

which sequence of actions users undertook [7]. An additional challenge is to align the 

modeling with established standard models to provide a solid basis for the usage paths, 

learning paths [7], learning goals [2], or learning performance [8]. For example, it must 

be possible to model and compute learning progress. The literature review points to 

established domain and user modeling approaches from the field of Intelligent Tutoring 

Systems (ITS), as described by Woolf [2] or with focus on user modeling by Kurup et 

al. [9]. All in common is the obvious separation of the usage pathways into atomic or 

logical coherent elements. In the context of this article we see modeling approaches 

such as the Knowledge Tracing (KT) model with Competence-based Knowledge Space 

Theory (CbKST) [10]. In comparison, for KT the usage pathways need to be predefined 
into states or knowledge components and the transitions between them, plus additional 

models on learning and the alignment to competencies. We adopt this modeling ap-

proach but our concept uses the observed interactions to construct the models’ base 

usage pathways layer. To quantify performance and determine the estimated level of 

needed assistance we adopt the Performance Factors Analysis (PFA) logistic regression 

model [11]. The PFA builds upon the KT modeling approach and uses observed success 

and failure states to compute performance scores. 



 

Fig. 1. Example for usage pathways (top) and general Ideal Paths Model concept [4].  

2 Adaptive Control and Pathways Modeling 

Various adaptive assistance systems exist [1, 3, 8], and their underlying principle fol-

lows the concept of control systems theory, here adaptive control [12]. General (linear) 

closed-loop feedback control systems react to observations or measurements to modify 

the controlled system or plant. With human behavior in the loop, we typically deal with 

complex, nonlinear processes which motivates the use of adaptive control theory [12]. 

Central to this – and central to this work – is the concept of Model Reference Adaptive 

Control (MSAR) [12, 13], i.e., using reference models to more broadly and informed 

react (or adapt) to parameter changes. For instance, these reference models can provide 

information on the corrects usage pathways which the users should follow, or to quan-

tify their performance by computing a metric as deviation from a targeted pathway. The 
quantification aspect is of high importance for adaptive systems since they need to 

know when to actually adapt and in which direction. However, building such reference 

models is typically done manually and expert or domain knowledge is needed [2]. 

 

Our view on adaptive systems follows the 4-phased adaptivity cycle by Shute et al. 

[3]. It structures an adaptivity process in four consecutive phases or stages where each 

new run depends upon the previous run, hence forming a cycle. Its main components 

are the four phases (1) capture, (2) analysis, (3) select and (4) present, plus an additional 

user or learner model after the analysis phase. However, we incorporate the user models 

into the analysis phase (2) [14]. The argumentation is that the select phase (3) not only 

builds upon and uses the user models but also incorporates additional analysis results, 

such as usage pathways models. 



We define a usage pathway (Fig. 1) as the sequence of user interactions with a sys-

tem. For e-learning, a special form is a learning pathways model. Typically, these mod-

els are pre-defined sequences of usage patterns within an e-learning system [7]. Learn-

ing pathways are a crucial element for adaptive e-learning systems since they provide 

information how learning courses are structured, how to determine if the users are on 
track, and to estimate the learning progress (cf. previous section). Without loss of gen-

erality this is also valid for assistance systems in general. Modeling of these pathways 

typically follows a standard directed graph model 𝐺 = (𝑉, 𝐸) with vertices or nodes 𝑉 

and edges 𝐸. Since our modeling is based on observations our graph is directed with a 

linear ordering in the sequence of user interactions. We can differentiate between pre-

defined or offline usage pathways and effective usage or online pathways. The former 

is typically defined in the design and implementation phase of an assistance system [1, 

2]; the latter, effective pathways, are dynamically build at runtime. Two cases of usage 

pathways adaption can be distinguished: macro and micro pathways adaption. 

Macro adaption looks at the whole pathways. An adaptive system would offer the 
users recommendations on suitable learning paths, or it would modify the navigation in 

such a way that for the continuing system usage suitable pathways are selected. 

Micro adaptation works on individual elements inside of pathways, i.e., it works on 

the nodes. Therefore, the recommendations or adaptations are more immediate. In this 

work the adaptation model uses the micro level. 

For our modeling approach there is no restriction on the granularity. Better said, it 

follows the level of detail of the observations. If the observations are at a very high, 

abstract level, then the resulting graph contains only a few nodes, and vice versa. Typ-

ically, assistance systems do not record all possible smallest events in a fine granular 

way (e.g., all mouse movements), but follow the systems’ logical structure (e.g., win-

dows, scenes) and the events on the user-interaction elements (e.g., buttons). Basically, 

the filtering of which events to observe reflects the decision of what type of adaptivity 
should occur. For example, if adaptivity is to guide the user only at the macro level, 

then only the beginning and end of a user session might be required. 

In our e-learning application context the important aspect of didactic modeling is not 

yet made explicit. While the data-driven usage pathways detection hint at how users 

navigate through the content it does not directly reveal the didactic model of the e-

learning system. Model knowledge of learning pathway levels and sequencing of con-

tent would help in recommending next learning objects. Learning path levels could be: 

(1) sequence of (learning) courses; (2) sequence of chapters or missions; (3) sequence 

of subchapters; (4) sequence of knowledge units (individual scenes, web pages, etc.); 

(5) interaction sequence within a knowledge unit, e.g., factual knowledge before action 

knowledge before source knowledge. 

3 Data-Driven Modeling for Flexible Adaption 

The idea is to use the observations from standardized tracking data to create graph-

based common paths models. These common paths are needed for our concept of the 

Ideal Paths Models (IPM) (Fig. 1) [4] as reference model for adaptivity. The IPM de-

scribes all necessary steps to achieve the objective without unnecessary detours. Essen-

tially, it is a sequence of episodes and interactions that leads most directly to the next 



goal. For instance, in a computer simulation for reconnaissance training users’ first se-

lect those interaction elements which lead them to a virtual command center where they 

are briefed on their first mission (Fig. 1). A scene can have multiple manifestations for 

each possible user interaction. These interactions are observed or tracked in an assis-

tance system, typically in the form of activity streams, e.g., "John has completed recon-
naissance mission 1". To allow general applicability we propose to use the W3C Activ-

ity Streams standard which encodes usage interaction events in triple form with <actor, 

verb, object>. In the e-learning domain this has been adopted to the Experience API 

(xAPI) standard following the same triple principle. This observation data can be rec-

orded in a graph-database to make use of graph or social network algorithms [14, 15]. 

For instance, to find most or least active users or learning objects, or to compute the 

shortest path between nodes or subset of nodes. Graph pattern analysis [15] can find 

individual learning paths or, for several users, common learning path models. The re-

sults or outputs of these analysis processes are, for example, learning path models or 

ideal path models, which again can serve as inputs in further downstream processes in 

the formation of learning path models. Thus, the observation data (capture phase) can 

also be used for data-driven model building, which allows a much more flexible appli-
cation, because the application-specific data models can "grow naturally", schema-free. 

 

Fig. 2. Concept to find common path and compute performance scores based on possible inter-
action sequences, individual user paths and application of shortest path graph algorithm. 

One example using graph pattern analysis and a shortest path algorithm is depicted 

in Fig. 1 3. Given is a possible interaction sequence 𝑃 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} with the in-

dividual interaction elements 𝐴. . . 𝐹. Different interaction paths are observed for differ-

ent users 1-3. As stated, before the observations are captured using xAPI whereas the 

xAPI objects reflect the interaction elements (Fig. 1), and they are stored as nodes in 

the graph. Using graph pattern matching, e.g., string similarity, a common subset of 

nodes 𝐶 ⊆ 𝑃  between all user paths can be determined. The result is a common path, 

e.g., 𝐶 = {𝐴, 𝐶, 𝐹} (Fig. 2). One approach to pattern analysis and to find the common 

path is to encode the users’ pathway graphs 𝑃𝑗  (for user 𝑗) as binary adjacency matrices. 

Multiplication of these matrices yields the nodes which are common in all graphs, i.e., 

nodes on the common path. The next step is to quantify the individual user paths to 

determine the individual user performance. In our graph-based usage pathway model 

the transitions (or relationships) are assigned non-negative weights forming a weighted 

graph. This makes it suitable for applying path finding algorithms such as Yen’s k-



shortest path [15]. The concept is depicted in Fig. 2 on the right: for each user compute 

the shortest path and select that path or sub-graph 𝑃𝑗
∗ with the lowest cost 𝑐𝑚𝑖𝑛 . These 

costs are then normalized using the costs �̇� of the common path as reference (the com-

mon path must always have the lowest cost), i.e.,   𝑝𝑗  =
𝑐̇

𝑐𝑚𝑖𝑛
 (Fig. 2). In the context of 

the IPM the found common path is the basis for the “ideal paths”. Since ideality is 

subjective to the individual user and his personal usage (or learning) goal, the common 

path is only the base for the user’s own other pathways. This performance score tells 

how near a user is on an ideal path. In an adaptive system this score could be used to 
determine the point in time when adaptivity should be enabled, e.g., by thresholding on 

window-based aggregation of scores. 

4 Application Example 

We have conducted experiments with xAPI and graphs, implemented for adaptive as-

sistance in serious games. The results indicate that storing usage data as graph structures 

indeed brings advantages for modeling (flexibility) and analysis (existing algorithms). 

This is, multiple assistance systems have been equipped easily with xAPI trackers, and 
for the modeling process a schema-free, NoSQL graph database (e.g., Neo4j) helped to 

stay flexible, e.g., for new application domains. These kinds of databases also allow to 

directly apply graph algorithms such as Social Network Analysis, e.g., to determine 

frequently occurring (learning) paths, shortest paths, or to determine frequent or rare 

activities. A real-life example of such graphs is depicted in Fig. 3. 

 

Fig. 3. Real usage graphs, from xAPI observations. Nodes are actors and activities; edges are the 
verbs. Left: interaction sequence for one user. Right: interactions graph for multiple users.  

The selection of tracked events directly corresponds to the level of the targeted adap-

tivity level, i.e., macro- or micro-adaptivity (cf. section 2). For micro-adaptivity in our 

serious game application scenario we observe each interactive element in a scene. The 

outcome is that the adaptivity system can pinpoint the current state of a user within a 

session by comparing that to the common path reference model. Because of the cold-
start problem the adaptive assistance system needs data from multiple user sessions to 

build valid pathway models. 



Neo4j’s graph algorithms can be applied directly to the xAPI based graphs. In our 

current implementation the graphs have identical edge weights (cost=1); varying 

weights and stochastic graphs are planned for the future. After collecting the xAPI data 

from multiple user sessions we get all nodes and transitions on the possible interaction 

sequence (PIS) sub-graph (Fig 4, top). The minimal PIS from start to end can be found 

by using path finding algorithms such as Yen’s k-shortest path [15] (𝑘 = 1). The final 

step is to find those nodes which are on the common path but not the users’ currently 

observed usage path (e.g., string edit distances). The adaptive system can use the infor-

mation from the next estimated node (e.g., metadata such as the activity name or the 

name of the transition) to issue a hint to the user or to modify the system’s navigational 

path, i.e., allowing only to interact with the next estimated activity. In our application 

scenario we choose the adaptivity strategy based on the performance score and an ad-

ditional assistance level (based on other features, e.g., cognitive load [16]). 

5 Conclusion 

Adaptive systems need reference models to determine the correct timing and the direc-

tion how the automatic adaptation should happen. The underlying principle follows 

adaptive control from systems theory, i.e., in closed-loop feedback systems [12]. 

A key aspect in technical control systems is to measure the current state and derive 

some feedback. Assistance systems that follow that principle can quantify the devia-

tions from ideal paths by computing a distance metric between the current interaction 

sequence and (pre-defined) usage pathways. However, the construction of these usage 

pathway models requires domain and expert knowledge. 

This contribution addresses the data-driven, graph-based generation of such kind of 
models. The presented approach makes use of standardized triple-structured tracking 

data which is the input to the model generation process. 

In our application of e-learning assistance systems this is Experience API (xAPI) 

data. However, as xAPI is related to the more general W3C Activity Streams standard 

the approach is not restricted to the e-learning domain. By applying graph algorithms, 

we extract common paths and Ideal Paths Models which can act as reference models 

for adaptivity systems. Future work will further deepen the transfer to the specific e-

learning domain as well as to assistance systems in general. In the case of the former, 

the modeling must take didactic models and user model more into account. 
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