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Abstract. Cognitive modeling can be a viable tool to assess the cogni-
tive state of the users and to determine their current learning needs. For
instance, adaptive educational systems must match the learning needs by
estimating the level of memorization or forgetting. The research question
is, how to model latent cognitive variables such as memory degradation
and how to make use of it for adaptivity scenarios in the e-learning
context. Tools like cognitive architectures with established psychological
underpinnings can help here. However, development of cognitive archi-
tecture models is often complex, domain- and application-specific and
its transfer or general applicability is not evident. We present an innova-
tive dynamic modeling approach which automatically creates declarative
rules from interoperable activity stream observations to form models for
the cognitive architecture ACT-R. The developed framework uses those
models to analyze user actions according to their frequency, temporal
occurrence and memory activation levels. An adaptive e-learning system
can use the chunks’ activation levels to assess which concepts need re-
peated user attention. A prototype implementation for a serious game
for process training demonstrates the feasibility of the approach.
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1 Introduction

User modeling is key for adaptive e-learning or assistance systems which aim to
react to the users’ (learning) needs. Adaptivity here means to personalize the
usage experience to the individual needs of the users and their current working
context. The quality of adaptive systems directly depends on their understanding
of the users, i.e., on their user models. The more realistic these models represent
the mental states and cognitive processes, the more precise the approximation
of needs can be, and the better is the automatic parametrization of assistance
functions. That is of particular interest for the e-learning domain, where Intel-
ligent Tutoring Systems (ITS) target an optimal support for the learners [29].
A central active research question for adaptive e-learning systems addresses the
correct timing of adaptive educational systems, i.e., the issue of when to ac-
tually adapt. The question when to react or adapt is especially important for
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digital game-based learning systems, e.g., for educational serious games, because
we want to keep the users immersed in their gaming experience, not disturbing
their game flow. Serious games are games which should entertain but have at
least one additional characterizing goal [10]. In the case of educational serious
games this goal is learning whereas the learning objectives should be aligned
at the gaming experience and its objectives [18]. To achieve high learning out-
comes, the game design should foster immersion and flow [13]. High immersion
comes along with high intrinsic motivation to (continue) playing – and, hence,
to continue to learn [13]. The very essence of digital game-based learning is to
allow the users to play, to make mistakes, and to immerse themselves in a virtual
environment [10]. Misdirected automatic reactions, at the wrong time, can have
an extremely negative effect on immersion. For optimal efficacy and high user
acceptance, the correct point in time is of fundamental importance. For example,
an adaptive educational system could react when attention decreases, cognitive
load increases, or when the user seems to be in a repetitive cycle with no real
observable progress, or when there are signs of forgetting. Cognitive modelling
addresses such kind of issues.

The research question is how cognitive modeling can contribute to “intelligent
user models” and how it can be used for adaptivity in digital learning games.
More specifically, how to use a data-driven approach to dynamically generate
cognitive models which include latent cognitive variables such as cognitive load
or memory decay.

The contribution of this work is a concept for cognitive user models for digital
learning games by means of cognitive modelling and its application to adaptivity.

In comparison to cognitive models for general assistance systems, educa-
tional serious games come with additional training and learning aspects such
as learning styles, achievement of learning goals, gameplay instruments such as
trial and error, gamification, etc. This has to be considered when selecting a
cognitive modeling tool. Our concept shows how to apply the cognitive archi-
tecture ACT-R to educational serious games, and how to control adaptivity by
using memory activation levels from learned activity concepts. We have chosen
ACT-R based on a subjective value-benefit study. The main criteria were its
established psychological underpinnings and maturity, availability of implemen-
tation frameworks and community support, and its suitability to dynamically
modify the declarative and procedural models. Key aspects of our approach are
the dynamic generation of the ACT-R model based on observations, as well as
its use of standardized activity stream data as a general scheme for the observed
input data. This allows to apply the approach to other application domains. In
our e-learning domain we make use of the tracking standard Experience API
(xAPI) which is an established method to track learning, also in serious games
[21]. Our work is embedded in research on frameworks for adaptive assistance
systems [24].

A major challenge in the use of cognitive architectures is the required ex-
tensive modeling effort. Expert knowledge is needed for both the cognitive ar-
chitectures and the application domain. Taatgen and Anderson (2010) discuss
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Fig. 1. Example for adaptive hints (bottom, dashed rectangle) in the serious game
Exercise Trainer (EXTRA) [25]. The virtual agent recommends considering an activity
that was estimated to receive too little attention.

that it takes “substantial intellectual commitment to learn to understand models
of a particular architecture and to learn to construct models” [26]. We address
this issue by following a data-driven modeling approach. Our ACT-R model is
designed as a combined user and domain model. User interactions are captured
via xAPI and stored in a Learning Record Store (LRS) [1]. This interaction
data together with the data in the declarative and procedural module of ACT-R
forms the user models. A special feature of our approach is the dynamic mod-
eling of the production rules. At runtime, interaction data is translated into
ACT-R production rules for the virtual procedural ACT-R memory. Based on
this model, cognitive processes can be simulated and analyzed. We make use of
this to query the cognitive architecture which concept the user probably has “for-
gotten” – ACT-R allows to query the activation energy of the model’s concepts.
This activation energy – based on the Memory Decay Theory and Spreading
Activation – is mapped to a continuous, real number and it is determined by the
cognitive architecture at each simulation time step. Important game concepts,
which are neglected by the user, can be identified by looking at their decreasing
activation levels. A threshold function on the memory decay curve and ACT-R
activation levels indicates “forgetting”, and an adaptive system can react to this
situation and offer appropriate assistance [24]. In our implementation the adap-
tive system offers hints on the next recommended or expected activities. This
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recommendation is aligned at the simulated cognitive user model. Fig. 1 depicts
an example for the serious game Exercise Trainer (EXTRA) [25].

2 Related Work

Adaptive serious games are related to Intelligent Tutoring Systems (ITS) [29,28].
Central to many ITS implementations is the monitoring of student interaction
with the systems and to maintain a student or user model of knowledge and
activity [9,29]. The literature shows multiple approaches of using cognitive ar-
chitectures for Intelligent Tutoring Systems (ITS), such as the ACT-R based
Pump Algebra Tutor by Anderson et al. (2001) [5] or the Cognitive Tutoring Au-
thoring Tools (CTAT) by Aleven et al. (2006) [2]. Many ITS approaches utilize
cognitive architectures for modeling [16,5]. At the core of this modeling is the
division of knowledge into declarative and procedural units. Declarative knowl-
edge represents atomic facts, while productions represent abstract individual
goal-oriented problem-solving steps of a larger task. The modeling goal is to
realistically represent human problem-solving thinking [16]. In this context, pro-
duction rules comprise all possible solution paths that a student can undergo. A
basic technique of cognitive tutors is called model tracing [5], which we follow for
our solution approach. In model tracing, each action of the student is simulated
simultaneously in the cognitive architecture. Subsequently the student’s action
can be classified as correct or incorrect by comparing it with this simulation. This
allows the cognitive tutor to interact with the student in real time. Developers of
adaptive learning systems based on cognitive architectures are confronted with
complex modeling tasks, e.g., for the domain model. It requires expert knowledge
and experience [26,20]. To deal with this problem, systems are developed that
start from a higher level of abstraction and automatically design the more com-
plex model from it. Examples of this are ACT-Simple and G2A, which are based
on the Framework GOMS (Goals, Operators, Methods and Selection) [20,3].
The framework was conceptualized to make predictions about which methods
and operations users apply in digital systems to complete known tasks. ACT-
Simple uses a simple scripting language that compiles to ACT-R models [20].
Compared to our approach, here, the modeling effort should also be reduced and
simplified, but our concept tries to simplify it by moving the modeling to the
data observation level and to the activities to be observed. Several derivatives
have evolved from GOMS, such as KLM-GOMS, CMN-GOMS, NGOMSL or
CPM-GOMS. KLM-GOMS is a simple framework for the sequential description
of expert behavior. ACT-Simple builds on this and combines it with the power
of ACT-R. A similar work is the G2A system, which automatically GOMSL-
Models transformed to ACT-R [3]. GOMSL is an abstract modeling language
of the GOMS family that is more powerful than KLM-GOMS, for example, and
supports several of ACT-R features features, e.g., representation of mental ob-
jects, working memory, primitive internal and external operators, composition
methods, or even various flow-of-control constructs [3].
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Combining serious gaming and cognitive architectures is not a new concept
[28,11]. Gentile et al. (2019) provide an analysis on the potential role of cognitive
architectures for serious games, with focus on A.I. and non-player characters
(NPC). Such kind of virtual agents are often realized with Soar, for example
in the work by Wray et al. (2013) [30]. Mills and Dalgarno (2007) present a
conceptual architecture for game-based learning ITS implementations [17]. The
authors discuss the role ACT-R for various modeling tasks and how to build
declarative and procedural rules. In the context of serious games, we see a further
relation to the Player Experience Modeling (PEM) by Yannakakis (2012): for
personalization, adaptivity engines should be able to recognize and model the
learning style and detect the cognitive state of the users [31]. This very detection
of the cognitive states is the central aspect of our work and corresponds to the
user modeling efforts, as stated in the introduction. ACT-R has been used to
develop a virtual agent for use in training simulations for military operations
in urban areas [7]. A complex production set was modeled in order to achieve
autonomous action by the agent.

Although all these studies are similar in terms of modeling and use cases for
serious gaming, we did not find any literature that resembles our approach.

3 Cognitive Architectures & E-Learning

Our cognitive modeling approach for adaptivity is related to modeling for intel-
ligent tutoring systems (ITS). Generally, an ITS architecture includes various
models, mainly the user interface model, a student model, a domain model, and
a tutor model, all of them with varying interconnections (Fig. 2). In our work
we focus on the student model and the domain model since we need information
on the cognitive state of the user, and to which concepts or activities in the
computer application these states are linked to.

Student

User Interface Model

Tutor model 

Domain Model

Student Model

Fig. 2. General scheme of the models in an intelligent tutoring system.

In the context of e-learning, the formal modelling of the cognitive learning
state is of particular interest. This includes modelling the cognitive abilities of
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humans, including memory, language, perception and problem solving. We focus
on approaches to model forgetting or attention. The focus for adaptive knowledge
transfer concentrates on the possibility of forgetting: a cognitive architecture
can provide the adaptive system with information about content or activities
that a user may have forgotten or that are highly likely to be forgotten. One
possible adaptation strategy could be to remind and draw attention to these
activities. From a neurological point of view this means that the experience and
their underlying neuronal ensembles are consolidated (in the long-term memory).
Cognitive architectures largely consider such psychological and neuro-scientific
principles.

However, there is no precise definition of a “cognitive architecture” and it is
often unclear when a concrete (software) instance belongs to the class of cognitive
architectures [14]. Cognitive architectures attempt to recreate Artificial General
Intelligence (AGI), i.e., computer systems that correspond to human intelligence
[19]. According to Russel and Norvig (2009) there are four categories for the
realization of AGI [19] that are aimed at replicating:

– systems which think like humans – here we make use of a cognitive architec-
ture with its psychological underpinnings to simulate thinking.

– systems which act like humans – our simulation of the users’ thought pro-
cesses enables an approximation of a human behavior.

– systems which think rationally – since we base our modeling approach only
on observations, we depend on a rational behavior by the users.

– systems which act rationally – the simulation process typically is determin-
istic, therefore the adaptive decision-making processes appear rational.

Cognitive architectures are typically classified according to how they repre-
sent and process information. Three paradigms have emerged:

– symbolic, also called cognitivistic: use of explicit symbolic representations to
represent information. Cognitivist architectures are also referred to as sym-
bolic architectures and A.I. approaches. Although they are quite successful,
they lack generality to be applicable across domains [12].

– emergent, in the sense of connectionism: information is processed in a net-
work of connected computing units that communicate in parallel. The units
receive stimuli through their incoming connections, perform nonlinear com-
putation and influence other units through their outgoing connections.

– hybrid, a combination of both.

The most recent overview of the last 40 years of research on cognitive archi-
tectures was conducted by Kotseruba and Tsotsos (2018) [14]. They analyzed a
set of 84 architectures, of which 49 are still actively developed. They estimate
the number of existing cognitive architectures to be around 300. Other compar-
ative reviews have been conducted by Asselman et al. (2015) [6] and Thórisson
and Helgasson (2012) [27]. The most prominent representatives of cognitive ar-
chitectures are the “classical” candidates that have existed since the time of the
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emergence of cognitive architecture in the 1970s. Most widely used are the two
hybrid architectures ACT-R [4] and Soar [15].

We conducted a subjective value-benefit analysis to select a suitable cogni-
tive architecture for our dynamic cognitive modeling approach. Criteria for the
selection process included:

– general applicability and modeling flexibility.
– support for programming languages, maturity of implementing frameworks.
– complexity and learning curve.
– available documentation and community support.
– licensing costs, whereby free, open-source tools are favored.
– number of available scientific publications, indexed by Google Scholar, Web

of Science and Scopus.

From our applied research perspective, we focused on the implementation
aspects. The result (cf. Fig. 3) of our analysis indicated ACT-R as the most
versatile and for our approach of dynamic modeling suitable cognitive architec-
ture. The decisive factor for the result was above all the comprehensible code
examples of Python ACT-R.
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Fig. 3. Results of our subjective value-benefit analysis.

ACT-R tries to implement the formal abstraction of human behavior with a
module concept. At its core is the procedural module. The information gener-
ated in the surrounding modules flows into this module and is then processed
so that the next action step of an agent can be determined. Production rules in
ACT-R thus serve as circuit functions that map certain information patterns in
the modules’ memories, called buffers, to changes in buffer contents [4]. We make
use of these declarative and goal modules. In the declarative module, knowledge
is stored in the form of chunks. These chunks can be retrieved using productions
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if the goal buffer is set to a specific chunk. Therefore, the goal module serves as
a state manager to determine which productions will be run in each simulation
step. Based on ACT-R theory, various calculations are performed to find out
which actions in the other modules, which are involved in a particular produc-
tion, should be performed to fulfill the currently set goal. Section 5 explains the
dynamic generation of production rules and declarative chunks.

4 Concept for User Modeling and Artificial Intelligence
(UMAI)

We developed a concept for user modeling with A.I., named User Modeling and
Artificial Intelligence (UMAI). The A.I. part is the cognitive modeling by inte-
grating cognitive architectures for the modeling process. As stated before, our
concept targets applied research and therefore the direct applicability of cogni-
tive architectures for assistance systems. We make use of triple-structured activ-
ity data streams which can be used to track almost every user interaction event.
In this article we focus on the cognitive architecture ACT-R for educational se-
rious games. A key aspect is the dynamic generation of the ACT-R model based
on observed user interaction data. The output contains estimated memory or
chunk activation levels which an adaptive system can incorporate in its decision
processes.

Fig. 4. Extended 4-phased adaptivity cycle (based on [22]) with combined analysis-
learner-models-phase.

Our view on adaptive systems follows the 4-phased adaptivity cycle by Shute
et al. (2012) [22]. The cycle depicted in Fig. 4 structures an adaptivity process in
four consecutive phases or stages where each new run depends upon the previous
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run, hence forming a cycle. Its main components are the four phases (1) capture,
(2) analysis, (3) select and (4) present, plus an additional user or learner model
after the analysis phase. However, we incorporate the user models into the anal-
ysis phase (2). The argumentation is that the select phase (3) not only builds
upon and uses the user models but also incorporates additional analysis results,
such as usage pathways models. UMAI is located in the analysis phase (second
phase) and it contributes to the formation of the user or learner models. A spe-
cial feature of our approach is the dynamic modeling of the production rules. At
runtime, an ACT-R user model is generated based on interaction data which is
captured using the standard protocol xAPI. The interaction data is translated
into ACT-R production rules for the virtual procedural ACT-R memory. Based
on this model, cognitive processes can be simulated and analyzed. We make use
of this to query the cognitive architecture which concept the user probably has
“forgotten”. ACT-R allows to query the activation energy of the modelled con-
cepts. This activation energy, which is based on the Memory Decay Theory, can
be mapped to a continuous, real number and determined by the cognitive archi-
tecture per simulation time step. Important game concepts, which are neglected
by the user, can be determined by the decreasing activation energy. A threshold
function is used to model “forgetting” and an adaptivity system can react to this
situation and offer appropriate assistance [24].

The general process is as follows (cf. Fig. 5):

1. The main UMAI program is started. The start request includes a user iden-
tifier for which the cognitive modeling and simulation should take place.

2. Retrieve xAPI statements from an xAPI Learning Record Store (LRS). The
query typically includes filtering on the active user and on his latest usage
session. This is achieved through recording an initialized -statement for events
like a beginning a new level or starting a session.

3. Execute the model generator which takes the recorded activities (from xAPI)
and generates a simulation program. This dynamic generation of an ACT-R
program containing a user model depicts our dynamic modeling approach
(implementation details in section 5).

4. The simulation program is started and simulates the various steps the user
has undertaken. In accordance with classical cognitive modeling the simu-
lation builds a cognitive model on the sequence of user actions. By using a
cognitive architecture such as ACT-R for storing and processing the events
we can determine cognitive variables such as chunk activation levels (e.g.,
memorization level of an activity).

5. For each observed activity a chunk is generated, and an activation value is
computed using ACT-R.

6. Thresholding on the activation levels produce those chunks for which re-
peated attention is recommended.

7. The main program returns the selected activities and their activation levels.
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Simulation

Load ACT-R
parameters

Run Simulation

Store Chunk
Activations

Model Generator

Generate
Simulation Script

Main Program

xAPI Statements
from LRS

Execute Model
Generator

Load 
Simulation Script

Return Chunk
Activations

Chunk Activations

Thresholding

Fig. 5. Model generation process for one simulation request to the UMAI system.

5 Software Architecture, Implementation

Interactions with the game are transferred via xAPI to an LRS. This interaction
data together with the data in the declarative and procedural module of ACT-R
forms the learner model or student model.

The Experience API (xAPI) standard [1] allows to monitor a user’s varying
experiences in learning systems, ideally in a consistent format [21,1]. For general
application the related W3C activity stream standard [23] works similarly, from a
technical point of view, but with conceptual differences [8]. For implementation,
one needs to build an activity stream or xAPI adapter which tracks selected
events (many libraries for different programming languages exist). The choice
of events should be aligned at the overall analysis goal or the overall research
question [21].

In the designed software architecture (Fig. 6) the “intelligent user model” is
implemented as a micro service, and the communication with connected assis-
tance systems is done via HTTP RESTful services.

After each user action, the xAPI adapter generates an event statement and
sends it to the LRS. On request from the user (student or tutor) UMAI re-
trieves all recorded statements from the beginning of the session. Subsequently,
a retroactive simulation is started in the cognitive architecture.

This simulation can be repeated as often as desired to model different config-
uration variants, e.g., individualized memory decay and threshold parameters.
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Fig. 6. System Architecture for the UMAI concept and implementation.

Fig. 7. Python ACT-R code for dynamically creating production rules.
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After each simulation, data accumulated in the cognitive architecture can be
used for subsequent adaptivity decisions, e.g., offering recommendations or for
dynamic difficulty adjustment. For learning analytics purposes, we can visualize
the chunk activation values for each observation step (line diagram Fig. 9).

Once the activity stream from the session start to the last fired action is
retrieved, an ACT-R agent is run on a production set which is dynamically
generated from the stream.

In the first step the xAPI statements are parsed into an action stream array
where the sequential order is maintained. Our modeling in ACT-R is based on
the resulting stream and is independent of the domain of the underlying learning
system. The methodology analyzes the occurrence and frequency of action steps
as time series. As described in section 3, in ACT-R each chunk is assigned an
activity rate which degenerates over time. Chunks of declarative memory are
dynamically created for each of these action descriptions by dynamically creating
code fragments. An example for the code template is shown in Fig. 7.

If actions occur more than once and chunks have already been created for
them during the processing of the action stream, queries are made to the declar-
ative module. These requests may fail if the activity rate of the respective chunk
of the correlating action is below a pre-defined threshold.

The processing logic is as follows (cf. Fig. 7):

– For each action, a base production is first generated.
– If an action has been executed for the first time it is added to the declarative

memory as a chunk. Also, an identifying number is stored in a chunk_numbers
array and the focus buffer is set to the subsequent action.

– If an action occurred previously its chunk is retrieved from the declarative
memory and the focus buffer is set to the current chunk number.

– For each action, the production is called only once and a chunk of the
form action_0:action_descriptor is created. In Python ACT-R, a re-
quest is made to a declarative chunk by passing DM.request() to the func-
tion action_0:?action. Before this request can be sent, the chunk number
is determined when the particular action first occurred.

– Afterwards, the focus is not set to the next action, but to the production
that matches the chunk number. This is therefore the production at the point
where the action occurred for the first time. The focus is not set on the base
production, but on the productions forget and remember, which are also
generated for each action (Fig. 7).

– In case the declarative action-chunks have an activation less than or equal
to the threshold and the action is called, the forget-production is called.
Here, within the production rule, only the focus is set on the serial action.
If the activation is greater than the threshold, the remember production is
called. In case of calling the forget-production, the respective chunk cannot
be reactivated.

– In the remember production it is first checked whether all actions have been
processed. If this is the case, the focus is set to stop so that the simulation
of the agent can be ended in the next step with the stop production. If
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the processing status of the action stream has not yet reached the end, the
focus is set on the next action. In contrast to the original implementation,
in Python ACT-R it is necessary to add the called action to the declarative
memory again in order to increase the activation of the respective called
chunk.

6 Application & Results

For technical verification of the UMAI concept we implemented it for our seri-
ous game Exercise Trainer (EXTRA) [25] (Fig. 1 & 8). An adaptive assistance
system [24] linked to EXTRA is meant to point out little noticed – but essential
– concepts to the user. The UMAI concept can provide the necessary modeling
for the adaptivity response model.

In the following section, we briefly explain EXTRA, then we describe how
EXTRA relates to the UMAI concept and its application.

6.1 Serious Game: Exercise Trainer (EXTRA)

The game concept of EXTRA is designed as an isometric, turn-based simula-
tion game (Fig. 8). The general form of the game is geared towards process
training games which are related to logistics or business processes. The learning
objective is to learn the actors and relationships involved in complex processes.
The application background is technically complex IT scenarios with different
subsystems, inputs and outputs. In EXTRA, the complex roles, activities and
processes as well as the technical system-of-systems structure are abstracted
into a flexible game world and described by metaphors. For this purpose, the
player must build logistics chains with factories and infrastructure (cf. Fig. 8).
The learning objects are interwoven with the gameplay so as not to compromise
immersion. The terminology and the properties of the factories or connections
are therefore based on real systems, and the game supports training and recep-
tive knowledge transfer in a transparent way. The didactic goal is that essential
components and relationships of complex system-to-system structures are being
learned. An application example is the training of a process for image-based intel-
ligence in which the users experience the varying activities of tasking, collection,
processing, exploitation and information dissemination. The actual game goal
is to satisfy demanding “customers” with changing product desires (metaphor
for tasks) by constructing optimal logistic chains (metaphor for data or informa-
tion links) to optimally distribute products to markets. Gamification approaches
such as high-scores help to motivate players to compete with others and to repeat
playing the game. The score reflects the degree of success in satisfying customer
needs. If the requirements are not met in time, the score decreases; if the score
drops to zero, the game is lost.
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Fig. 8. The serious game Exercise Trainer (EXTRA) [25] for playful learning and
training of complex processes.

6.2 Application of UMAI

To verify the UMAI concept we focused on four essential EXTRA activities (cf.
Fig. 8) which the user can perform, and the sequence and timing of which can
be arbitrary:

– place street road: the user connects two stations in the supply chain with a
street. Either a street or a waterway must be placed, the type depends on
the player’s strategy.

– place waterway: like streets but with higher capacity although slower.
– increase workforce: the user increases the workforce at a factory in the sup-

ply chain to speed up the production and decrease the time to fulfil the
customers’ needs. To successfully master a level this activity should be used.

– sell images: once the user has established a fully functioning supply chain,
he is able to sell fabricated products, in this case imagery products. To sell
products he must click on an icon to place them in the distribution center
(the market). This is a required activity.

Each of these activities or events trigger sending of corresponding xAPI state-
ments which are used by UMAI as input data in order to build the ACT-R agent.

As shown in Fig. 5 the dynamic modelling is based on a file generator which
makes use of a Python template. From this template a simulation script is gener-
ated and run to calculate and return chunk activation values to an API endpoint.
This enables not only reporting use cases but also adaptive tutoring if the ac-
tivity rates are sent back to a tutoring model.

Figure 9 shows a report of activity rates which was recorded in EXTRA. In
this session the player started a level by connecting a factory to a market with a
street. This allows to bring products from the factory to the market. In the next
step he sold products at the market. In UMAI a chunk in the declarative module
is generated for each of the actions, the user has performed. After each iteration
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the activation level of these chunks is stored. The spikes in the diagram represent
an initial performing of an action or a memory retrieval. A good example would
be the tracking of the chunk which represents selling of products (bottom green
line in Fig. 9). If the threshold would be set to 0.75 the chunk would be forgotten
in the simulation and the corresponding production would have been set by the
goal buffer as described in section 5.

Fig. 9. Chunk activation values for 4 selected activities in the EXTRA game. The bot-
tom green line shows the memory degradation computed by ACT-R for the neglected
activity "sell products". In step 7 an adaptive hint was displayed which refreshed the
chunk and its activation value.

The implemented architecture has been extended to provide adaptive hints,
as shown in Fig. 1. To accomplish this, the tutoring model was extended to send
a request to UMAI after certain events or in a time interval. After every request
UMAI will simulate the current session and returns the corresponding activity
values. The computation of the simulation in our case took less than one second.
Based on thresholding the tutoring model uses these results to offer preemptive
hints to support the user.

Although the concept has been applied successfully, the technical study re-
vealed some limitations in respect to the power of the resulting model. As
stated, the complex and time-consuming modelling of declarative memory (fac-
tual knowledge) or production rules (action knowledge) makes direct application
unattractive. Whilst our solution approach addresses this issue by the dynamic
generation of procedural rules, real “intelligence” is not obvious. The intelligence
lies in the underlying mechanisms of cognitive architecture and its implementa-
tion. The presented modelling of “forgetting” by means of ACT-R can, considered
on its own, be realized more easily without a cognitive architecture. However,
this is only one aspect and ACT-R offers many more features that can be used
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for adaptivity decision making, such as cognitive load measurement or semantic
cognitive association tracking.

7 Conclusion

We developed a concept for data-driven user modeling with the cognitive archi-
tecture ACT-R. The concept targets applied research and the direct applicability
of cognitive architectures for assistance systems. We make use of triple-structured
activity data streams which can be used to track user interaction events.

The research question is how cognitive modeling can contribute to “intelligent
user models” and how it can be made operational for adaptivity.

The contribution of this work is a concept for data-driven, cognitive user
models for digital learning games by means of dynamic cognitive modelling and
its application to adaptivity.

We focus on the cognitive architecture ACT-R and its application for adap-
tive serious games. A key aspect is the data-driven, dynamic generation of the
ACT-R model based on observed user interaction data. The output contains
estimated memory or chunk activation levels which an adaptivity system can
incorporate in its decision processes, e.g., to find the right point in time to offer
context-sensitive recommendations.

The concept has been applied to a turn-based serious game in which an
adaptivity component in form of a virtual agent giving hints is controlled by
the cognitive model. Although the concept has been applied successfully, the
technical study will be developed further to incorporate the full potential of the
cognitive architecture.

Future work aims at the application to other serious games and assistance
systems. Further research looks at Hierarchical Bayesian Models for cognitive
models to estimate latent cognitive variables such as workload, attention, plan-
ing, perceived difficulty or forgetfulness.
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