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Abstract

In the domain of adaptive serious games, accurate user models can be crucial for helpful
adaptation. The goal is to automatically adapt such games to the user’s current needs and
knowledge level, thus increasing his learning flow and, ultimately, his learning outcome.
In contrast to physiological measurements, a user’s clicks can be captured without special
equipment. Therefore, inferring a user’s cognitive state solely from interaction data could
make the development of adaptive serious games far more feasible.

In this thesis, the existing approach of the Cognitive Intelligent User Modeling tool (CogIUM)
is enhanced and applied to the serious game Streamlined Lost Earth (SLE). The main research
question is: How to apply CogIUM to serious games to provide adaptivity?
By extending CogIUM and applying it to SLE, it is investigated how exactly CogIUM can

be utilized to compute quantitative measures of user performance called adaptivity scores.
Subsequently, CogIUM is evaluated in a user study in which 𝑛 = 22 participants played SLE
and afterwards filled out self-assessments regarding various cognitive attributes.
Results show a moderate correlation between self-assessed cognitive load and CogIUM’s

inferences. CogIUM showcases promising potential to infer a user’s cognitive load solely from
his click data, enabling the implementation of adaptivity manifestation based on CogIUM’s
inferences in future work.
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Kurzfassung

Im Bereich der adaptiven Lernspiele können akkurate Benutzermodelle entscheidend für eine
hilfreiche Adaption sein. Ziel ist es, solche Spiele automatisch an die aktuellen Bedürfnisse
und den Wissensstand des Nutzers anzupassen und so seinen Lernfluss sowie letztlich seinen
Lernerfolg zu steigern. Im Gegensatz zu physiologischen Messungen können die Klicks eines
Benutzers ohne spezielle Hardware erfasst werden. Die Bestimmung des kognitiven Zustands
eines Benutzers allein aus Interaktionsdaten könnte somit die Entwicklung adaptiver Lernspiele
weitaus praktikabler machen.

In dieser Arbeit wird der bestehende Ansatz des Cognitive Intelligent User Modeling tools
(CogIUM) erweitert und auf das Lernspiel Streamlined Lost Earth (SLE) angewendet. Die Haupt-
forschungsfrage ist: Wie kann CogIUM auf Lernspiele angewendet werden, um Adaptivität zu
ermöglichen?
Durch die Erweiterung von CogIUM und die Anwendung auf SLE wird untersucht, wie

genau CogIUM genutzt werden kann, um quantitative Maße der Nutzerperformance, soge-
nannte Adaptivitäts-Scores, zu berechnen. Weiterhin werden CogIUM‘s Berechnungen mittels
einer Nutzerstudie evaluiert, in der n=22 Teilnehmer SLE gespielt und anschließend Selbstein-
schätzungen bezüglich verschiedener kognitiver Attribute ausgefüllt haben.
Die Ergebnisse zeigen eine moderate Korrelation zwischen selbst eingeschätzter kogni-

tiver Belastung und CogIUM‘s Berechnungen. CogIUM zeigt vielversprechendes Potential,
die kognitive Belastung eines Benutzers allein aus seinen Klickdaten zu ermitteln, was die
Implementierung von Adaptivitätsmanifestationen basierend auf CogIUMs Berechnungen in
zukünftigen Arbeiten ermöglicht.
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Notation

List of Acronyms

CLT Cognitive Load Theory
CogIUM Cognitive Intelligent User Model
ECL Extraneous Cognitive Load
ELAI Framework E-Learning Artificial Intelligence Framework
GCL Germane Cognitive Load
HBM Hierarchical Bayesian Model
ICL Intrinsic Cognitive Load
LA Learning Analytics
LMS Learning Management System
LRS Learning Record Store
NASA TLX NASA Task Load Index
RTLX Raw Task Load Index
SCORM Sharable Content Object Reference Model
SLE Streamlined Lost Earth
xAPI Experience Application Programming Interface
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1 Introduction

As the education system is becoming ever more digital, new opportunities arise to convey
learning objectives more efficiently. However, especially the current crisis caused by the
Coronavirus showcases that there is still a lot to be done regarding the education system’s
digitalization.

E-Learning and, more specifically, game-based learning has been an active field of research
for the past years. [Qian and Clark 2016] define game-based learning as an environment
where game content and gameplay enhance knowledge and skills acquisition, and where game
activities involve problem-solving spaces and challenges that provide players/learners with a
sense of achievement. Games used for educational purposes are a subclass of serious games
and are thus often referred to as educational serious games.
Educational serious games provide the possibility to learn playfully, catering to many

teenagers’ and young adults’ preferences. It has been shown that this can lead to better
performance, knowledge acquisition, and long-term concept retention [Boyle et al. 2016].

In an optimal scenario, the game’s difficulty and the user’s skill level are perfectly balanced,
causing the user to be completely immersed in the game. This state is described in cognitive
sciences as the state of Flow [Nakamura and Csikszentmihalyi 2009]. For this scenario to
happen, serious games must automatically adapt to the user’s specific needs. A visualization
of the flow model combined with adaptive measures can be seen in figure 1.1.
[Pearson and EdSurge 2016] define adaptive learning tools as "education technologies that

can respond to a student’s interactions in real-time by automatically providing the student
with individual support". The four-phased adaptivity cycle presented by [Shute and Zapata-
Rivera 2012] formalizes the different stages of automatic adaptation of learning material to a
user. It comprises the four phases capture, analyze, select and present, as shown in figure 1.2.
In this thesis, the focus will be on the capture and analysis phase: The goal is to capture a
user’s interaction data with an educational serious game and subsequently infer the learner’s
cognitive state from the captured interaction data.
To provide an optimized learning experience, a serious game should automatically adapt

to the learner’s individual needs. But what are those individual needs, and how can they be
measured or inferred? To make a well-founded decision on how and when to adapt, cognitive
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Figure 1.1: Staying in the flow channel with adaptive measures [Streicher and Smeddinck 2016].

variables like the user’s skill level, motivation, prior knowledge, and cognitive load have to
be captured. However, capturing brain activity or eye movement requires special equipment
and limits the potential usage scenarios. In a realistic scenario, the only data that can easily
be gathered is the user’s interaction data with a serious game. Therefore, the previously
mentioned cognitive variables have to be inferred from interaction data.

Figure 1.2: Four-phased adaptivity cycle from [Streicher and Smeddinck 2016], based on [Shute
and Zapata-Rivera 2012].
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1.1 Problem Statement

The specific problem statement of this thesis studies the application of the Cognitive Intelligent
User Modeling tool (CogIUM) [Aydinbas 2019] to the serious game Streamlined Lost Earth
(SLE), and the integration within the ELAI adaptivity framework [Streicher and Roller 2015].

CogIUM is a cognitive user modeling concept which demonstrates how to compute proba-
bility distributions of cognitive variables given synthetic user interaction data. At the start of
this thesis, only a first concept and a general prototype of CogIUM were available, with no
application to an existing serious game.
Input for the CogIUM model is an array of measured variables from the user’s interaction

with a game. In the prototypical implementation, those variables were mission success, mission
score and mission time. From the observed variables, CogIUM infers probability distributions
for latent cognitive variables like cognitive load, prior knowledge and motivation.
At its core, CogIUM is a hierarchical Bayesian model. For every cognitive variable, prior

beliefs about its distributions are coded into the model. Using user interaction data as input,
those beliefs are reallocated to account for the newly observed data. Outputs are new probability
distributions for latent cognitive variables, called posterior distributions.

If assumptions about the variables’ distributions are false, the model’s inference might also
differ from reality. Thus, prior distributions for newly introduced variables have to be chosen
thoughtfully when expanding the model. Existing prior distributions within the CogIUM
model have to be examined regarding their plausibility.
Prior to this thesis, the CogIUM model was only tested on synthetical data. Accordingly,

there was no proof that the cognitive meaning that CogIUM ascribes to its latent variables
corresponds to learners’ actual cognitive attributes. Furthermore, the model’s distribution
assumptions might have proven false once the model is applied to real user interaction data.
Additionally, the initial CogIUM model only uses a small part of the interaction data’s

information. Interaction data is commonly represented as a series of Experience API (xAPI)
statements that follow the format subject, verb, object and can additionally contain contextual
information.
The variables mission success, mission score, and mission time can easily be extracted from

this series of statements. However, they only represent part of the information that is present
in the interaction data. The model needed to be extended to enable CogIUM to use all available
information on the user.

To preserve general applicability, CogIUM must retrieve all of its input data from xAPI state-
ments generated by events within the game. Especially, CogIUM should not be interconnected
with the game to ensure its transferability to other serious games.
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1.2 Research Objectives

This thesis’ objective is to showcase CogIUM’s applicability to an existing educational serious
game. After each mission completed by the user, the goal is to answer the following question:
How to adapt the game for the next mission to provide the user with an optimal learning
experience? This question could potentially also be posed after every subtask within a mission.
It is analyzed if CogIUM when applied to a serious game, can provide valuable insights for
adaptivity. This goes hand in hand with evaluating the mathematical assumptions about the
distribution of latent and observable variables that are made in the model.
To successfully apply CogIUM to an existing serious game, several supporting research

questions have to be investigated:

• What specific features of the incoming xAPI data can be modeled by CogIUM (additional
to the already modeled mission success, mission score, and mission time) in order to
utilize all relevant information for adaptivity?

• Which assumptions about the relationships and distributions of latent and observable
variables make sense?

• Can the CogIUM inferences provide valuable insights regarding adaptivity?

• Does the information about latent cognitive variables inferred by CogIUM correlate with
users’ self-assessment?

• How to compute adaptivity scores from the latent cognitive variables’ posterior distribu-
tions (output of CogIUM)?

The thesis’s main goal is to progress CogIUM from an experimental proof of concept
to a validated technology demonstrated in a relevant environment. This corresponds to
an advancement from Technology Readiness Level (TRL) 3 to 5. TRLs are a measure of a
technology’s maturity level originally introduced by NASA [Mankins 1995]. The scale ranges
from TRL 1: Basic principles observed to TRL 9: Actual system proven in operational environment.

Furthermore, the goal is to evaluate CogIUM’s inferences using real user interaction data by
conducting a user study. Since CogIUM ascribes a cognitive meaning to its latent variables, it
must be analyzed if those variables correspond to users’ actual cognitive attributes.
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1.3 Project Environment

The thesis was written in cooperation with the department for Interoperability and Assistance
Systems (IAS) of the Fraunhofer Institute of Optronics, System Technologies, and Image
Exploitation IOSB. It was supervised by Dipl.-Inf. Alexander Streicher, who is also the second
reviewer of this thesis. Fraunhofer IOSB is one of the largest institutes for applied research
in image exploitation and analysis across Europe. The IAS department focuses on innovative
concepts and solutions for intelligent tutoring interfaces for technology-enhanced learning
and adaptive learning systems. A main field of application is professional image exploitation.
Learners of image exploitation tasks benefit from digital E-Learning methods and adaptive
learning systems that automatically adapt to the user’s needs.

The IAS department has already developed several solutions in the field of adaptive learning
systems. Among them is the E-Learning Artificial Intelligence (ELAI) framework [Streicher and
Roller 2015]. The ELAI framework is an interoperable tutoring agent that adjusts a simulation
or game to a user’s specific needs. It consists of a game engine adapter and an ELAI controller.
Within the ELAI controller, the interpretation engine and influence engine compute optimal
adaptations based on the collected user data.
Additionally, multiple serious games were developed at IAS: Seek and Find for Image

Reconnaissance (SaFIR) plus adaptivity (SaFIRa) [Streicher, Roller, and Biegemeier 2017],
Exercise Trainer (EXTRA) [Streicher, Szentes, and Gundermann 2016], and Lost Earth 2307.
Lost Earth 2307 was developed to help image interpreters’ training and support related learning
objects like gaining basic knowledge in interpreting and analyzing aerial and satellite imagery
and understanding processes of the Reconnaissance-Cycle.

1.4 Structure

The following section provides an overview of the thesis’s structure: Chapter 2 provides the
theoretical foundations that this thesis is built upon. Most notably, cognitive modeling, the
existing CogIUM prototype, and hierarchical Bayesian models are introduced to the reader.

In chapter 3, state of the art research on cognitivemodeling, measurement of latent cognitive
variables and hierarchical Bayesian modeling is presented.

Regarding the concept and development of CogIUMa - CogIUM applied that are discussed in
chapters 4 and 5, my approach is structured as follows: As a first step, scenarios are developed
that showcase how exactly CogIUM will work and interact with ELAI and SLE. Before the
extended CogIUM model’s iterative development could start, xAPI data had to be available.
Several approaches for the collection of both synthetic and real-world xAPI statements are
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explored. Using the collected data, the CogIUM prototype developed by [Aydinbas 2019] is
iteratively extended and restructured. Additional observable variables are incorporated so that
the model uses as much information from the xAPI statements as possible. The enhancement
and extension of the model are guided by Cognitive Load Theory (CLT) that also forms the
theoretical foundation for the CogIUM prototype by Aydinbas. Subsequently, it is analyzed how
adaptivity scores can be computed from CogIUM’s output. Outputs of the CogIUM inference
are posterior distributions for latent cognitive variables like cognitive load, motivation, and
prior knowledge.
Finally, the extended CogIUM model is evaluated in chapter 6. To obtain user interaction

data as well as self-assessments regarding cognitive attributes, a user study is conducted.
The study is described with regards to concept, hypotheses, planning, execution, and results.
Self-assessment data and CogIUM inference data are compared and examined for correlations.
Additionally, results and their implications for CogIUM’s further usage are discussed.

Chapter 7 concludes the thesis. A summary of the work and its main contributions is given,
and possible directions for future work are outlined.
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2 Conceptual Background

In the following chapter, concepts that are fundamental for this thesis’s theoretical background
are presented. The first section will explain Bayesian data inference and hierarchical Bayesian
modeling. Subsequently, the initial CogIUM prototype is described in detail. Since CogIUM is,
at its core, a hierarchical Bayesian model, prior understanding of Bayesian modeling is helpful.
Furthermore, Cognitive Load Theory (CLT), the serious game Streamlined Lost Earth (SLE),
and the ELAI framework are presented.

2.1 Bayesian Modeling

Bayesian modeling is used in this thesis to reallocate beliefs about cognitive variables based on
observed user interaction. As such, it is motivated by the functionality of the human brain: We
humans receive sensory input through our eyes, ears, nose, mouth, and skin. We then combine
this input with beliefs about our current situation to conclude our surroundings’ current state.
Aydinbas gives an intuitive example for this: "We are interested in the state of the world, what we
call a hypothesis, given certain observations. A typical everyday task could be to determine from
our sensory input whether we know the person in front of us or not. Two alternative hypotheses
would describe the fact that we either know the person or not" [Aydinbas 2019].
Let us assume we have a set of hypotheses H and we observe a dataset D. For each

hypothesis ℎ ∈ H , the conditional probability 𝑃𝑟 (ℎ |D) of ℎ given observation D is calculated
by Bayes’ rule as follows:

Pr(ℎ |D) = Pr(D|ℎ) · Pr(ℎ)
Pr(D) = ∑𝑛

𝑖=1 Pr(D|ℎ𝑖) · 𝑃𝑟 (ℎ𝑖)
(2.1)

Pr(ℎ) is called the prior distribution and represents prior probabilities about the likelihood
of a hypothesis. In the example given above, those prior probabilities could mean the following:
Suppose we are on vacation in a foreign country on our own. When meeting a person,
we assume that we probably do not know the person because we are far from our usual
surroundings. Accordingly, the prior probability for the hypothesis that we know the person
would be much lower than for the alternative hypothesis that we do not know the person. On
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the other hand, suppose we are in a familiar environment like our school, university, or even
our home. The prior probabilities would then be distributed the opposite way since we would
assume that we probably know a person in our home or school.
Pr(D|ℎ) denotes the likelihood of dataset D given hypothesis h. The whole term is nor-

malized by Pr(D) = ∑𝑛
𝑖=1 Pr(D|ℎ𝑖) · 𝑃𝑟 (ℎ𝑖), which is the probability of data D. Bayes’ rule

allows computing the conditional probability of hypothesis ℎ given observation D from the
likelihood, the prior probability of ℎ, and the probability of D. This conditional probability
is also referred to as posterior probability. Often we are only interested in which hypothesis
is the most likely, given an observation D. To answer this question, the normalization term
Pr(D) can be omitted since it is identical for all hypotheses.

For this thesis’s scope, we use Bayesian models to represent the cognitive states of a learner.
This means that the Bayesian models will be designed to allow the prescription of cognitive
meaning to its parameters. The model’s parameters will be latent cognitive variables like
cognitive load, motivation, and prior knowledge. Those variables are then used to explain the
observations from learners’ interaction data with learning material.

2.1.1 Hierarchical Bayesian Models

Whenever the model is used to represent data from multiple learners or multiple learning
materials, the use of Hierarchical Bayesian Models (HBMs) is appropriate. Gelman et al.
emphasize that "simple non-hierarchical models are usually inappropriate for hierarchical
data: with few parameters, they generally cannot fit large datasets accurately, whereas, with
many parameters, they tend to ’overfit’ such data in the sense of producing models that fit the
existing data well but lead to inferior predictions for new data" [Gelman et al. 2013]. HBMs are
especially useful when several parameters that influence a probabilistic process are related or
connected in some way. To model this relation, HBMs allow the definition of multiple variables
with prior distributions parameterized by values sampled from a joint parent distribution. A
visualization of this can be seen in figure 2.1. Regarding the modeling approach in this thesis,
this is used in the following way: Each user has his own motivation level. The motivation level
of a single user can vary between missions. However, those variables should not be completely
independent of each other. For a single user, motivation is expected to vary over time more
steadily than rapidly.
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Figure 2.1: Exemplary hierarchical Bayesian model for an experiment about category learn-
ing (from [Kruschke 2010]). The group-level parameters come from global-level
distributions, whereby data from one group can influence estimates for other groups.

When working with HBMs, the structure of a model can be visualized to facilitate an
understanding of the model. [Lee andWagenmakers 2014] present a visualization of HBMs that
is also used as a standard in this thesis. An exemplary visualization by Lee and Wagenmakers
can be seen in figure 2.2. Figure 2.3 explains the meaning of the nodes’ shapes and colors in
the visualization.
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θi

zi

φi

µ

λ

ki

ψ

n

i people

Priors

zi ∼ Bernoulli (0.5)
µ∼ Uniform (0.5, 1)
λ∼ Gamma (0.001, 0.001)

Intermediate variables

φi ∼ Normal (µ,λ)I(0,1)

Deterministic variables

ψ← 0.5

θi ←



φi if zi = 1

ψif zi = 0

Observable variables

ki ∼ Binomial (θi , n)

Figure 2.10.: Graphical model that implements the exam scores example (Lee and Wagenmakers, 2014,
p. 79). The notation for (hierarchical) Bayesian models was introduced in Table 2.2 on the
preceding page.

we wish to infer from the data. However, because we assume at least two groups, θi is a deterministic

variable because once we knew the group, we also know θi. If the subject belongs to the group of guessers,

we assign a success probability of ψ = 0.5, so this value is fixed. If, on the other side, the subject belongs

to the group that has learned, we assume that the success probability is at least as good as guessing,

that is, something between 0.5 and 1. We model the success probability φi of the second group as a

normally distributed variable with mean value µ and precision λ. We do not assume anything about the

mean value and choose a uniform prior over the range of [0.5, 1]. The precision is also set to a common

non-informative prior. By choosing a parent distribution for the parameters of the success rate of the

knowledge group, we have created a hierarchical model. Each subject is modeled individually, that is the

model infers for each subject an individual success rate θi, but all subjects in the knowledge group are

connected via the parent distribution and share the same parameters µ and λ. The Gaussian distribution

is a “convenient (but not perfect) choice for this ‘individual differences’ distribution (...) at least in the

absence of any richer theory” (Lee and Wagenmakers, 2014, p. 79).

A noticeable phenomenon of HBMs is a shift in the hierarchical estimates towards the overall average.

This type of behavior is common for hierarchical models, and is known as ‘shrinkage towards the mean’

Lambert (2018, p. 437). This is an intended by-product of using HBMs, because it takes probability mass

away from the outlier estimates. The most extreme parameter estimates are shifted the most. HBMs take

probability mass away from outlier estimates, and reallocate it towards those points with higher certainty.

This behavior makes HBMs more robust than heterogeneous models because they are less susceptible

to overfitting. Another benefit of HBM is a greater sample size than for heterogeneous models, because

they partially pool data across groups. Due to the increased sample size HBMs achieve higher precision

for group-level estimates. In general, the benefits of HBM grow as the number of groups increases,

and when the data are sparser for each group. This approach works best when there are more than 10

2.1. How to Model User Behavior – Paradigms in Cognitive Science 33

Figure 2.2: Graphical representation of HBMs by [Lee and Wagenmakers 2014].

Type of Variable

Status of Variable Discrete Continuous

Observed

Unobserved

Stochastic

Deterministic

Figure 2.3: Notation for nodes in graphical representations of HBMs by [Aydinbas 2019] based
on [Farrell and Lewandowsky 2018].
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2.1.2 Bayesian Data Analysis

According to [Gelman et al. 2013], Bayesian data analysis consists of three steps:

1. Setting up a full probability model: This means to postulate a joint probability distri-
bution for all observable and non-observable variables in a problem. The model should
incorporate all available domain knowledge on the problem’s underlying processes and
the data collection process.

2. Calculate posterior distribution: Given observed data, calculate the posterior distri-
bution - the conditional probability distribution of the non-observable variables. Those
posterior distributions are of final interest.

3. Evaluate the fit of the model: Examine how well the model fits the data. Are the
conclusions that can be drawn from the posterior distribution reasonable? How sensitive
are the results to the modeling assumptions in step 1?

Kruschke divides the process of Bayesian data analysis into five steps, giving a more detailed
description [Kruschke 2014]. Aydinbas vividly visualizes the following steps in figure 2.4.

1. Identify the data relevant to the research question. This involves the measurement scales
of the data and the definition of variables that are to be predicted and variables that are
predictors.

2. Define a descriptive model for the relevant data. The mathematical form and its parame-
ters should be meaningful. The model should be appropriate for the theoretical purposes
of the analysis.

3. Specify a prior distribution of the parameters. The prior distribution should capture the
analyst’s assumptions and be agreeable to other skeptical scientists.

4. Use Bayesian inference to reallocate credibility across parameter values. Interpret the
posterior distribution with respect to the research questions.

5. Check that the posterior predictions mimic the data with reasonable accuracy, which
is called "posterior predictive check". If not, consider a different descriptive model and
repeat the analysis.

Outputs of the first step are a set of variables divided into observable and latent variables.
In the application scenario of a serious game, observable variables can include mission success,
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5. Posterior predictive
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Figure 2.4: The five steps of Bayesian data analysis with exemplary output by [Aydinbas 2019]
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mission score, mission time, and others. Latent variables are designed to represent cognitive
variables like cognitive load, motivation, and prior knowledge. In the second and third step,
causal relationships are specified, and a joint probability distribution over all observable and
latent variables is postulated. By specifying the causal relationships between the variables, the
hierarchic structure of the HBM is also implicitly defined. Variables are categorized as global,
group, individual, and observable variables. This process includes assigning prior distributions
to all variables. For the design choices made in steps 2 and 3, domain knowledge of the
underlying processes is crucial. False causal relationships or unsuitable prior distributions can
lead to false inferences by the model. In the fourth step, called Bayesian Inference, the posterior
distributions for all model variables are computed. Because the posterior distribution cannot
be computed analytically, this is done by sampling values from it: Drawing a large number of
samples from the distribution yields an approximation of the distribution’s shape. The fifth
and final step comprises the posterior predictive check: From the posterior distributions that
were the output of step 4, values are sampled. Those values are compared to the originally
observed data. The simulated data should resemble the observed data.
When designing the initial CogIUM prototype, Aydinbas closely followed the presented

steps above. This design process is described in detail in section 2.4.

2.2 User Tracking - Experience API (xAPI)

In all Learning Analytics (LA) applications, data on a user’s interaction with learning materials
needs to be tracked, stored, and retrieved. To achieve interoperability, the data’s format must
be standardized, allowing an adaptivity framework like ELAI to work with the interaction data
regardless of whether the data originated from user interaction with a Learning Management
System (LMS) or with an educational serious game.

Several approaches to specifying such a standard exist. Traditionally, SCORM has been the
most commonly used format to store this type of data. SCORM stands for Sharable Content
Object Reference Model. It was developed by the Advanced Distributed Learning Initiative
(ADL) and consists of a set of technical standards for LMSs and E-Learning content. The basic
idea is that any SCORM conformant LMS can work with any SCORM conformant E-Learning
content. An analogy for this is a DVD player: It can play DVDs by every manufacturer,
and a DVD can be played by DVD players from every manufacturer as well [Rustici 2021a].
This works because there is a defined set of technical standards, just like what SCORM is for
E-Learning environments.
In 2011, ADL contracted Rustici Software to develop the next evolution of SCORM. This

resulted in the Tin Can API, which is called that way because the development process was
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"meant to be a two-way conversation between [Rustici Software] and the E-Learning industry"
[Rustici 2021b]. In 2013, the third generation of Tin Can was published under the name
Experience API (xAPI).

xAPI is a standard that captures user interaction as a stream of activities. Every activity is
represented as an xAPI statement, which is based on the JavaScript Object Notation (JSON)
format. An xAPI statement is mainly based on the structure subject, verb, object. Figure 2.5 by
[Vidal, Rabelo, and Lama 2015] shows a detailed description of an xAPI statement’s semantic
structure. In addition to the subject, verb, object format, a statement includes a timestamp
and can also store information about the context and the result of an activity. This leads to a
machine- and human-readable stream of activities. To send, store and retrieve statements, the
xAPI standard uses RESTful HTTP requests, meaning it can be used with any programming
language. Statements are sent to, stored in, and retrieved from a Learning Record Store (LRS)
using a RESTful web-service [ADL 2021]. An LRS stores all statements and can exist on its
own or inside an LMS [Rustici 2021b].

Statement

Agent Group

Actor ≡ Agent or Group

Verb

Activity

Agent Group

Statement

Object ≡ Activity or Agent
or Group or Statement

xsd:dateTime

xsd:dateTime

xsd:string

xsd:string

Attachment

Context

Result

verb

actor

object attachment

context

result

timestamp

stored

version

uuid

Figure 2.5: The semantic network of the xAPI statement model (from [Vidal, Rabelo, and Lama
2015])
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2.3 Cognitive Load Theory (CLT)

During the design process of CogIUM, Cognitive Load Theory (CLT) acted as a guideline for
the model’s structure. Therefore, understanding CogIUM also requires understanding CLT,
CogIUM’s theoretical foundation.
While researching the difference in problem-solving skills between experts and novices,

Sweller found evidence suggesting that schema acquisition and automation are the primary
mechanisms of learning [Sweller 1988]. Built on his findings, he presents the Cognitive Load
Theory (CLT), intending to showcase how information can be structured in order to focus the
learner’s cognitive activities on schema acquisition.
One central assumption of the CLT is that a learner only has limited working memory

capacity [Van Merrienboer and Sweller 2005]. According to CLT, a learner can hold about
seven elements in his short-term working memory. Additionally, he can only operate on two
to four of those elements simultaneously. Furthermore, CLT assumes that a learner’s total
cognitive load is the sum of intrinsic cognitive load (ICL) and extraneous cognitive load (ECL).

ICL represents the intrinsic difficulty of the learning material. More precisely, it reflects the
number of interactive elements that the learning material comprises. Therefore, it cannot be
altered for a given learning material. However, ICL is dependent on the knowledge level of the
learner. If the learner is an expert, ICL will use much less of his working memory because the
relevant schemes are already stored in his long-term memory. For a novice, all information is
new, and accordingly, ICL for him is very high. For a fixed knowledge level, ICL can only be
changed by changing what is learned or by the act of learning itself [Sweller 2010].

ECL represents the cognitive load caused by instructional design that is more complex than
necessary. Thus, ECL is load that is not necessary for learning and can be reduced by optimizing
the instructional design. If the learning material features high element interactivity and ECL
is high, this can lead to a scenario where the total cognitive load is greater than the working
memory capacity. In this case, high ECL can interfere with the learning and negatively affect
the learning outcome [Sweller 1994]. This is because working memory resources that deal
with ECL do not contribute to learning but must be allocated if the instructional procedures
demand those resources [Aydinbas 2019].
The third component of CLT is germane cognitive load GCL. GCL describes the working

memory resources dedicated to dealing with ICL of the learning material or, in other words, the
proportion of a user’s cognitive load that is relevant for the current learning goal. Hence, GCL
does not contribute to the total cognitive load and is independent of the presented information.

A vivid visualization by Aydinbas showing the relation between the three types of cognitive
load can be found in figure 2.6 [Aydinbas 2019].
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Figure 2.6: Influence of ECL and motivation on GCL for three different cases by [Aydinbas
2019] based on [Sweller 2010].
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When both ICL and ECL are much lower than the working memory capacity, an increase in
ECL does not influence the learning outcome because there are still enough working memory
resources to deal with both ICL and ECL. In this case, ICL and GCL are equal since all of the
ICL can be dealt with. This scenario is shown in the upper box of figure 2.6.
Let us assume that ICL is high, ECL is low, and together they roughly equal the working

memory capacity. Again, ICL and GCL are equal because all of ICL can be dealt with. However,
if ECL now increases, the sum of ICL and ECL becomes greater than the working memory
capacity. ECL’s required resources still have to be allocated, since they are necessary to
understand and follow the instructions. This leaves fewer resources to deal with ICL than what
would be needed. Therefore, GCL decreases and is now lower than ICL. This can be seen in
the middle box of figure 2.6.
The bottom box of figure 2.6 depicts a scenario with the same initial situation as in the

middle scenario: The sum of ICL and ECL equals the working memory capacity. If the learner’s
motivation decreases, he can use less of his total working memory capacity. This also leads to
a decline of GCL.

2.4 CogIUM Framework

Aydinbas developed an initial prototype of the Cognitive Intelligent User Modeling Framework
(CogIUM) as the product of his master’s thesis [Aydinbas 2019]. Since it also forms the
foundation of this work, it will be described in-depth in the following section.

CogIUM is - at its core - a Hierarchical Bayesian Model (HBM) (see section 2.1.1). Simply put,
it receives observed data as input, combines this data with prior beliefs about the distribution of
its latent variables, and outputs posterior distributions for all of its latent variables. Additionally,
CogIUM ascribes a mechanistic meaning to its variables: The latent variables of the model were
designed to represent cognitive variables like cognitive load, motivation and prior knowledge.
Therefore, CogIUM’s latent variables are also referred to as latent cognitive variables. Those
variables are used to explain the observable variables, variables that model the observed input
data. In the final CogIUM model by Aydinbas, the observable variables weremission success,
mission score andmission time. A graphical representation of CogIUM’s structure is shown
in figure 2.7. The model’s large structure and complexity include numerous design choices and
mathematical assumptions. An overview of those is given in the following section:

CogIUMmodels the three observable variablesmission success,mission score andmission time.
Before explaining how the observable variables are modeled, an introduction to CogIUM’s
most prominent latent cognitive variables and their meaning is required:
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Deterministic variables

wmp = 7
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gclpc ←


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Figure 4.20.: Graphical model of�4, as implemented in the CogIUM package.�4 models the cause for
three observable variables: task success kpc, mission score spc, and mission time tpc. �4 is
based on�3, but extends the model by incorporating tpc as additional observable variable,
modeled as normally distributed with hierarchically modeled parameters. The notation for
HBMs was introduced in Table 2.2 on page 32.

4.3. Realizing Cognitive User Models 102

Figure 2.7: Final model of the CogIUM protoype by [Aydinbas 2019].
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• The variable𝜓𝑝𝑐 represents the prior knowledge of a user 𝑝 regarding concept 𝑐 .

• The variable𝑚𝑝𝑐 models the motivation of a user 𝑝 while playing concept 𝑐 .

• Conforming to Cognitive Load Theory (CLT)(see section 2.3), CogIUM includes three
types of cognitive load: 𝑖𝑐𝑙𝑐 describes the intrinsic complexity of concept 𝑐 ; 𝑒𝑐𝑙𝑐 describes
the cognitive load caused by the instructional design of concept 𝑐; 𝑔𝑐𝑙𝑝𝑐 describes the
germane cognitive load specific to a user 𝑝 and a concept 𝑐 . A user’s total cognitive load
is calculated by the formula 𝑐𝑙𝑝𝑐 = (1 −𝜓𝑝𝑐) · 𝑖𝑐𝑙𝑐 + 𝑒𝑐𝑙𝑐 . The more prior knowledge a
user has in the domain of concept 𝑐 , the less influence 𝑖𝑐𝑙𝑐 has on his total cognitive load.

• 𝛿𝑝𝑐 represents a user’s free working memory capacity. It is calculated by subtracting
a user’s total cognitive load 𝑐𝑙𝑝𝑐 from his working memory capacity 𝑤𝑚𝑝 and then
normalizing to the range [0,1]: 𝛿𝑝𝑐 =

𝑤𝑚𝑝−𝑐𝑙𝑝
𝑤𝑚𝑝

Using the latent cognitive variables outlined above, CogIUM accounts for the three observable
variablesmission success 𝑘𝑝𝑐 ,mission score 𝑠𝑝𝑐 andmission time 𝑡𝑝𝑐 . For each observable variable,
the exact underlying model structure and the corresponding design choices are described in
the following listing:

• Mission success 𝑘𝑝𝑐 is modeled as a Bernoulli distribution with success probability 𝑝𝑜𝑏𝑠 .
The main advantage of the Bernoulli distribution is that it produces only binary outcomes,
either success or failure, or 1 and 0, which is exactly the domain of the variable task
success. The success probability 𝑝𝑜𝑏𝑠 is again modeled as a distribution, more specifically
a beta distribution. Germane cognitive load 𝑔𝑐𝑙𝑝𝑐 influences the 𝑎 parameter and free
working memory capacity 𝛿𝑝𝑐 influences the 𝑏 parameter of the beta distribution. The
equations 𝑎 = 1 + 𝑔𝑐𝑙𝑝𝑐 and 𝑏 = 1 − 𝛿𝑝𝑐 were chosen to ensure that 𝑘𝑝𝑐 has a chance of
50% to be either 1 or 0 when 𝑔𝑐𝑙𝑝𝑐 = 0 and 𝛿𝑝𝑐 = 0 , that is, when the learner dedicates no
resources to the task and the learning task demands all available resources. A positive
𝑔𝑐𝑙𝑝𝑐 increases the success probability as well as a positive 𝛿𝑝𝑐 . A negative𝑔𝑐𝑙𝑝𝑐 decreases
the success probability as well as a negative 𝛿𝑝𝑐 .

• Mission score 𝑠𝑝𝑐 is modeled as normally distributed with a mean value determined by
germane cognitive load 𝑔𝑐𝑙𝑝𝑐 , free working memory capacity 𝛿𝑝𝑐 , and a global standard
deviation 𝜎𝑠 . The distribution is defined by the following formula:

𝑠𝑝𝑐 ∼ N(𝑔𝑐𝑙𝑝𝑐 + 𝑣𝑠 · 𝛿𝑝𝑐 , 𝜎𝑠) .
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– 𝑣𝑠 is a multiplicative factor that governs the degree to which free working memory
capacity 𝛿𝑝𝑐 influences 𝑔𝑐𝑙𝑝𝑐 . Each subject has its own value for 𝑣𝑠 . Additionally,
𝑣𝑠 is modeled hierarchically in the way that the values for all subjects are drawn
from a normal distribution with global parameters 𝜇𝑣 and 𝜎𝑣 .

– The standard deviation 𝜎𝑠 is a global variable, thus it is assumed that the score
deviates from its distribution center the same for all subjects and all missions.

• Mission time 𝑡𝑝𝑐 is influenced by three distinct parts: a minimal time 𝑡𝑚𝑖𝑛 , a contribution
from germane cognitive load 𝑔𝑐𝑙𝑝𝑐 , and a contribution from free working memory
capacity 𝛿𝑝𝑐 . Minimal time 𝑡𝑚𝑖𝑛 is modeled as a concept group variable. The underlying
assumption is that each mission has a minimal time required to complete it. Mission
time 𝑡𝑝𝑐 is postulated to have the following distribution:

𝑡𝑝𝑐 ∼ N(𝑡𝑚𝑖𝑛 + 𝛼𝑡 · (1 − 𝑔𝑐𝑙𝑝𝑐) − 𝛽𝑡 · 𝛿𝑝𝑐 , 𝜎𝑡 ).

Now that all involved variables - latent and observable - have been introduced, I will present
the latent variable’s modeling in more detail.
As outlined above, CogIUM includes the three different types of cognitive load defined

by CLT. Intrinsic Cognitive Load (ICL) is represented in CogIUM by the variable 𝑖𝑐𝑙𝑐 . 𝑖𝑐𝑙𝑐 is
modeled hierarchically with a mean value and standard deviation that are also latent cognitive
variables. It is a conceptual variable, thus only varies between missions, not between subjects.
Furthermore, 𝑖𝑐𝑙𝑐 is always positive and at least 1 because each mission must have at least
one learning element. Extrinsic Cognitive Load (ECL) is also a conceptual variable within
CogIUM denoted 𝑒𝑐𝑙𝑐 . Like 𝑖𝑐𝑙𝑐 , it is modeled hierarchically by a Normal distribution with a
mean value and standard deviation that are also latent cognitive variables. ECL represents
the cognitive effort necessary to process a mission or task’s instructions, but not the learning
material itself. In an ideal learning environment, ECL should be as low as possible so that the
subject can fully focus on the actual learning process. ECL is assumed to have the possibility
to be 0, but not negative. The third component of CLT is Germane Cognitive Load (GCL). It
represents the amount of a user’s working memory dedicated to handling the ICL. The total
available amount of working memory capacity is retrieved by multiplying the motivation𝑚𝑝

with working memory capacity𝑤𝑚𝑝 . Since motivation𝑚𝑝 is normalized between 0 and 1, it
determines the proportion of working memory capacity available for the current learning task.
From this capacity, the value of 𝑒𝑐𝑙𝑐 is subtracted because the learner has to deal with ECL to
understand the instructions. It is limited to positive values because negative values are neither
plausible nor interpretable. To allow a comparison between different users, 𝑔𝑐𝑙𝑝𝑐 is normalized



2.4 CogIUM Framework 21

by the working memory capacity𝑤𝑚𝑝 because this variable can differ between subjects. This
gives the following formula:

𝑔𝑐𝑙𝑝𝑐 =


0, if𝑚𝑝 ·𝑤𝑚𝑝 − 𝑒𝑐𝑙𝑐 < 0
𝑚𝑝 ·𝑤𝑚𝑝−𝑒𝑐𝑙𝑐

𝑤𝑚𝑝
, else

Due to the normalization, 𝑔𝑐𝑙𝑝𝑐 is always between 0 and 1. A value for 𝑔𝑐𝑙𝑝𝑐 of 1 means that
there is no 𝑒𝑐𝑙𝑐 and all of the working memory capacity is dedicated to learning. A value for
𝑔𝑐𝑙𝑝𝑐 of 0 can mean one of two things, or a combination: Either the motivation is so small that
there was not enough initial working memory capacity, or the value for ECL is higher than
the working memory capacity available to deal with ICL. The total cognitive load 𝑐𝑙𝑝𝑐 is the
sum of 𝑖𝑐𝑙𝑐 and 𝑒𝑐𝑙𝑐 .

In addition to the components of cognitive load, another essential variable within CogIUM
is prior knowledge𝜓𝑝 . It represents a user 𝑝’s level of domain knowledge. Prior knowledge
𝜓𝑝 is assumed to determine the influence of ICL on a user’s total cognitive load. The more
domain knowledge a user has, the less ICL should be imposed on him by the learning material.
Therefore,𝜓𝑝 is modeled as a multiplicative factor between 0 and 1 that determines how much
the ICL 𝑖𝑐𝑙𝑐 contributes to the total cognitive load 𝑐𝑙𝑝𝑐 .
Each user 𝑝 has a personal variable working memory capacity 𝑤𝑚𝑝 that represents how

many learning elements a subject can process in parallel. Initially, it was modeled by Aydinbas
as normally distributed around a mean value of 7 with a standard deviation of 1 to reflect the
knowledge about the general limitations of the working memory [Chong 2005]. However,
Aydinbas found during his validation that the model used the variable to explain individual
differences by setting it close to 0 or high above 7. Since this did not correspond to the variable’s
designed range, it was set to a fixed value of 7 [Aydinbas 2019].
This concludes the description of CogIUM’s complex structure. When observed data is

provided as input, CogIUM computes posterior probability distributions for all latent cognitive
variables. This is referred to as CogIUM inference. Because the analytical calculation of the
posterior distributions is intractable in such a large model, an approximation of the distributions
is obtained by drawing a large number of samples. CogIUM’s sampling process can take up to
10 minutes on a modern laptop’s CPU when using a reasonable sample size of at least 1000
samples.
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2.5 Educational Serious Games - Lost Earth

To showcase and evaluate CogIUM’s functionality, an educational serious game was required
as a demonstrator. For this purpose, Streamlined Lost Earth (SLE) was chosen. SLE is a version
of Lost Earth, an educational serious game in the domain of image exploitation developed at
Fraunhofer IOSB. The following section provides an overview of the Lost Earth project and its
different versions.

2.5.1 Lost Earth 2307

Lost Earth 2307 is an educational serious game designed to support training of image in-
terpreters. It is a turn-based 4X strategy game. 4X stands for explore, expand, exploit and
exterminate. By playing the game, users should learn how to analyze aerial and satellite
images and formally describe the identified objects. The image data can originate from optical,
radar, or infrared sensors. It was developed by the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation (IOSB) to enhance the education of professional image
interpreters at the Air Force Training Center for Image Reconnaissance (AZAALw) of the
German Armed Forces [IOSB 2016]. Interpretation of aerial imagery is an important tool for
reconnaissance and can be used to gather information in inaccessible locations. Radar image
interpretation, for example, is used in search and rescue operations to find missing earthquake
victims [Streicher and Smeddinck 2016].

The game is set in a science-fiction scenario in the future, where a vicious cult took over the
galaxy and oppressed humankind. As a rebel organizationmember, the usermust free the galaxy
that consists of multiple colonies by solving missions that include image interpretation tasks.
As the game progresses, the missions become more and more challenging. To immerse the user
in the game while also achieving a maximum learning outcome, the learning objectives and
game objectives were designed to correlate very closely [Atorf, Kannegieser, and Roller 2019].
The game features two different kinds of missions: reconnaissance missions and deployment
missions.
In a reconnaissance mission, the user first receives a briefing on that mission’s objectives.

Next, he has to task a sensor and a platform to record the imagery. Depending on the weather
conditions at the target location, the user must choose the right sensor and platform in order
to succeed. Once the imagery recorded by the sensor becomes available, he has to analyze,
annotate and align the imagery and finally fill out a report with the results. If the report’s
quality is sufficient, the user successfully completed the mission.
The second type of missions are deployment missions. They focus on illustrating the
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advantages and disadvantages of specific sensors and platforms [Atorf, Kannegieser, and Roller
2019]. Each sensor or platform in the game has some strengths and weaknesses that can be
analogously found in real-world sensors and platforms [Streicher and Smeddinck 2016].

2.5.2 Streamlined Lost Earth

Streamlined Lost Earth is a heavily adapted version of Lost Earth 2307. Extensive evaluations of
Lost Earth 2307 showcased the need to improve the game’s usability, provide shorter missions
that can be completed in a few minutes and improve accessibility by evolving it from a desktop
application to a web-based application [Atorf, Kannegieser, and Dillig 2020].
The streamlined version only provides a few missions to showcase the functionality. Its

primary advantage is that it is accessible in a browser. This also means that it can be used for
online user studies, which is not possible with LE 2307 since it is not web-based. In the game,
the user receives help from the assistant L.I.S.A., who introduces the game’s functionality and
walks the user through his first mission. The L.I.S.A. assistant can give the user explanations in
a separate dialogue or highlight the section of the screen that is relevant for the next necessary
step, as shown in figure 2.8. The image exploitation tasks, as well as the general game structure,
are a lot more simplified than in LE 2307 (see figure 2.10).

(a) (b)

Figure 2.8: L.I.S.A. dialogue and highlighted screen section in SLE
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(a) (b)

Figure 2.9: Main Menu and Galaxy Map in SLE

(a) (b)

Figure 2.10: Image Exploitation Tasks in SLE
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2.6 ELAI Framework

To facilitate CogIUM’s applicability and interoperability, this thesis’s goal is to integrate
CogIUM within the E-Learning Artificial Intelligence (ELAI) framework.

ELAI is an interoperable intelligent tutoring framework developed at Fraunhofer IOSB, with
the objective to enable interoperable adaptivity for educational serious games. By adapting the
game to the user, the goal is to optimize his learning experience and ultimately maximize his
learning outcome. The framework’s architecture decouples the game engine and the adaptive
entity, allowing for better interoperability [Streicher and Roller 2017].
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Figure 2.11: The E-Learning Artificial Intelligence framework [Streicher and Roller 2015]

It consists of a game engine adapter and an ELAI controller (see figure 2.11). The game
engine adapter is responsible for capturing usage data and presenting the adapted content. For
tracking a user’s interaction with a game, the framework makes use of the Experience API
(xAPI) protocol introduced in section 2.2.

The ELAI controller is the architecture’s central "intelligent" element, also referred to as
the tutoring component. Within the ELAI controller, the interpretation engine and influence
engine compute optimal adaptations based on the collected user data: Captured usage data is
analyzed by the interpretation engine. Subsequently, adequate adaptive measures are selected
by the influence engine. Internally, the interpretation engine can use different microservices
to analyze usage data. CogIUM is implemented as such a microservice.
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3 State of the Art

This chapter presents state-of-the-art research on relevant topics for this thesis. The first
part focuses on methods to gather data on latent cognitive variables. Regarding Cognitive
Load Theory (CLT), it is discussed how a user’s cognitive load can be measured or inferred.
As a benchmark for self-assessment surveys, the NASA Task Load Index (NASA TLX) is
introduced to the reader [Hart and Staveland 1988]. Modern adaptations and enhancements are
presented as well as entirely new approaches. In the second part, research on the evaluation
and comparison of Bayesian models is presented.

3.1 User Modeling - Measuring Latent Cognitive Variables

As the name suggests, latent cognitive variables are latent or hidden, which means that they
cannot be easily measured. However, to model a learner’s cognitive state, knowledge about
those variables is crucial. In this section, different approaches to the collection of data on latent
cognitive variables are presented. After a general overview, the measurement of cognitive load
is covered in detail.
[Conati et al. 2020] investigated the usage of interaction data as an information source

to predict cognitive abilities. In a user study, they compared the predictive performance for
cognitive abilities using only interaction data, only eye-tracking data and both interaction and
eye-tracking data. The researched cognitive abilities were perceptual speed, visual working
memory, spatial memory, visual scanning and visualization literacy. To measure the cognitive
abilities, the participants had to take a series of tests after completing the actual task. While
eye-tracking data generated the most accurate predictions, results showed that interaction
data can still outperform a majority-class baseline. Additionally, it was found that interaction
data can predict several cognitive abilities with better accuracy at the very beginning of the
task than eye-tracking data, which is valuable for delivering adaptation early in the task. Left
click rate and time to first click were the top two predictors for all cognitive abilities, suggesting
the importance of those two features for predicting cognitive abilities. [Conati et al. 2020]
concluded that adaptation for interactive visualizations tasks could be enabled using solely
interaction data. This is also the approach taken in this thesis.
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3.1.1 Measuring Cognitive Load

The methods used for measuring cognitive load can be divided into four broad categories
[Brunken, Plass, and Leutner 2003]: subjective direct (self-reported stress), subjective indirect
(self-reported mental effort), objective direct (brain signals and dual task performance), and
objective indirect (physiological).

Awidely used subjectivemeasure of cognitive load is perceived task difficulty, which typically
consists of rating the perceived difficulty of a task on a 7- or 9-point Likert scale. Paas et al.
found that people are quite capable of giving a numerical indication of their perceived mental
burden [F. Paas et al. 2003]. Studies have shown that reliable and non-intrusive measures of
cognitive load can be obtained with uni-dimensional scales [F. G. Paas and Van Merriënboer
1994]. [Jovanović et al. 2019] provided study participants with a 2D-Canvas (see figure 3.1) to
rate their perceived task difficulty. In their study, they found significant association between
trace-based measures of examined learning constructs - cognitive load and self-efficacy -
with some indicators of the students’ engagement with learning activities as well as with the
students’ final exam score.

Figure 3.1: 2D canvas tool for self-reporting of perceived task difficulty by [Jovanović et al.
2019].

In conclusion, rating scales have been a frequently used method to obtain cognitive load
measures and have been widely accepted by the research community [Jovanović et al. 2019].
However, there are two feasible approaches when measuring cognitive load with rating scales:
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Students can be asked to rate their cognitive load immediately after each subtask and eventually
the average rating can be used as the cognitive load measure. Alternatively, students can be
asked to rate their cognitive load only once, after they finished the whole task. Schmeck et
al. investigated the differences of those two approaches by asking study participants to rate
their perceived effort and task difficulty six times during problem solving and once after they
finished the problem. They found that the delayed ratings of both effort and difficulty were
significantly higher than the average of the six ratings made during problem solving [Schmeck
et al. 2015]. However, they also found that for ratings of affective variables such as interest and
motivation, the delayed rating did not differ from the average of immediate ratings. It is still
subject to debate which of the two methods is better. For more abstract concepts like learning
strategies and learning behaviour, research has shown that students’ survey-based self-reports
about properties of learning and traces of their actual learning activities are not well aligned
[Jamieson-Noel and P. Winne 2003]. In particular, students tended to overestimate their use of
study tactics. Zhou and Winne attribute this to the fact that students may have incomplete
and reconstructed memories as well as subjective and implicit theories of the mental processes
involved [Zhou and P. H. Winne 2012].

Another popular approach to infer cognitive load is through eye-tracking, which falls into
the category of objective indirect measures. Buettner proposes the inference of cognitive load
based on four eye-tracking measurements [Buettner 2013]: Pupillary diameter mean, pupillary
diameter standard deviation, number of gaze fixation and saccade speed. This method is also
used by Sharma et al. in a lab study to determine the causal relationship between cognitive
load and information flow [Sharma et al. 2021]. It must be stated that for this type of inference,
specialized eye-tracking equipment is required to precisely measure pupil diameter, fixation
and saccades. This limits the practical use-cases to lab settings.

One attempt to infer cognitive load with low cost gear was made by [Gjoreski, Luštrek, and
Pejović 2018]: With the help of a cheap off-the-shelf wearable device physiological data was
recorded. The data included pulse rate, galvanic skin response and skin temperature. During
the recording, the users were exposed to cognitive tasks of varying difficulty. Subsequently, the
authors use Machine Learning algorithms to map the recorded physiological data to collected
reference data. This approach has the benefit that it is non-intrusive in contrast to rating scales
and does not require expensive equipment. However, Gjoreski et al. reported poor predictive
performance of the trained ML algorithm. As reference data, the user’s cognitive load was
collected through a self-assessment of the user.

For the self-assessment, Gjoreski et al. use the NASA Task Load Index that is explained in
the following section 3.1.2.



30 3 State of the Art

3.1.2 NASA Task Load Index

Since the NASA Task Load Index (NASA TLX) was presented in 1988 by [Hart and Staveland
1988], it has become a benchmark against which the efficacy of other measures, theories, or
models are judged [Hart 2006]. Its use has spread far beyond its original application (aviation),
focus (crew complement), and language (English). It has been cited in over 550 studies and has
been transferred into several modern formats like an iOS app and a web app [Sharek 2011].

The NASA TLX comprises two parts: In the first part, users are asked to rate six workload-
related factors on a multi-dimensional rating scale (see figure 3.2). The second part consists of
pair-wise comparisons of those workload-related factors: For every pair, the user has to choose
which factor provided the most significant source of workload variation in the completed task
(see figure 3.3). Eventually, the ratings from the first part are weighted based on how often
they were picked in the second part. Those weighted ratings are then summed up and divided
by a normalization term. This yields a total workload score in the range of 0 to 100.
The six involved workload-related factors are defined as follows:

• MENTAL DEMAND (MD): How much mental and perceptual activity was required (e.g.,
thinking, deciding, calculating, remembering, looking, searching, etc.)? Was the task
easy or demanding, simple or complex, exacting or forgiving?

• PHYSICAL DEMAND (PD): How much physical activity was required (e.g. pushing,
pulling, turning, controlling, activating, etc.)? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?

• TEMPORAL DEMAND (TD): How much time pressure did you feel due to the rate or
pace at which the tasks or task elements occurred? Was the pace slow and leisurely or
rapid and frantic?

• OWN PERFORMANCE (OP): How successful do you think you were in accomplishing
the goals of the task set by the experimenter (or yourself)? How satisfied were you with
your performance in accomplishing these goals?

• FRUSTRATION LEVEL (FR): How insecure, discouraged, irritated, stressed and annoyed
versus secure, gratified, content, relaxed and complacent did you feel during the task?

• EFFORT (EF): How hard did you have to work (mentally and physically) to accomplish
your level of performance?

Over the last 20 years, the most common modification made to NASA-TLX has been to
eliminate the weighting process altogether or weighting the subscales and then analyzing them
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Figure 3.2: NASA TLX scales. The acronyms are explained in section 3.1.2.

Figure 3.3: NASA TLX weighting of contributing factors. The pair-wise comparisons determine
the influence of the ratings from figure 3.2 on the total cognitive load.
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individually [Hart 2006]. This is referred to as Raw TLX (RTLX) and has gained popularity
because it is easier to apply. Studies that compare NASA-TLX and Raw TLX have shown
mixed results: In some, RTLX was reported to be more sensitive than NASA TLX, some
reported them to be equally sensitive, and some reported NASA TLX to be more sensitive
[Hart 2006]. Therefore, it remains unclear how the weighting scale’s omission influences the
ratings’ accuracy.

For this thesis, the NASA TLX is used to collect users’ self-assessment about their perceived
cognitive load. Since the users are only asked to fill out the assessment twice, it was decided
that the weighting process can be included without over-straining the user study participants.
A detailed description of the design choices made for the user study in this thesis is given in
section 6.1.

3.2 Model Evaluation and Model Comparison

When creating or extending Bayesian models, there is a need for methods to compare those
models with regard to their quality. The primary objective of such a model is predictive
accuracy: The model should be able to predict new data as well as possible.
Gelman et al. state that checking the model is crucial to statistical analysis. Bayesian

prior-to-posterior inferences assume the whole structure of a probability model and can yield
misleading inferences when the model is poor [Gelman et al. 2013]. Therefore, good Bayesian
analysis should include at least some check of the adequacy of the model’s fit to the data and
the model’s plausibility for the purposes for which the model will be used.
The most common way to check the fit of a model is by performing a posterior predictive

check. Posterior predictive distribution denotes a probability distribution over possible values
of future data 𝑦. The posterior predictive distribution is analytically intractable in a realistically
sizedmodel because of the high-dimensional intervals involved. Therefore, sampling is required
to obtain an approximation of the posterior predictive distribution. The process of drawing a
sample consists of two steps [Lambert 2018]:

1. Sample 𝜃𝑠 ∼ 𝑝 (𝜃 |𝑦), that is, sample a parameter value from the posterior distribution.

2. Sample 𝑦𝑖 ∼ 𝑝 (𝑦 |𝜃𝑠) , that is, sample a data value from the sampling distribution
conditional on the parameter value from the previous step.

Those two steps are iterated. The drawn samples approximate the shape of the posterior
predictive distribution. Increasing the number of drawn samples will also increase the approxi-
mation quality. In Bayesian data analysis, posterior predictive distributions are used to check
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whether the model can reproduce the observed data’s most important features. Gelman et
al. state that if the model fits, then replicated data generated under the model should look
similar to observed data [Gelman et al. 2013]. A minimal but vivid example for this is given
in figure 3.4 by [Aydinbas 2019]. Figure 3.4a shows the observed data that the model will try
to fit. The observed data shall be modeled with a multivariate normal distribution. For the
sake of simplicity, it is assumed that the covariance matrix 𝛴 is known. Hence, only the mean
values 𝜇1 and 𝜇2 are the unknown latent variables. Using sampling, a posterior distribution for
both unknown variables can be obtained. Drawing from those posterior distributions and then
drawing from the Normal distributions parameterized by the two unknown variables yields a
sample of the posterior predictive function. Each of those samples is represented as a green
dot in figure 3.4b on the right. Visually comparing the observed data to the simulated data
from the posterior predictive function, it is evident that the model is able to reproduce the key
features of the observed data. This procedure is called posterior predictive checking and is
usually a lot more complex than in this toy example.

(a) Two-dimensional observations obtained from a
two-dimensional multivariate normal distribution.

(b) 1000 samples drawn from the posterior predictive
distribution of the model. The density is approxi-
mated by a kernel density estimation.

Figure 3.4: Example of Bayesian data analysis fitting a multivariate normal distribution with un-
known mean and known co-variance matrix to two-dimensional data by [Aydinbas
2019].

Comparing models is especially important since it is typically the case that more than one
reasonable probability model can provide an adequate fit to the data in a scientific problem.
When comparing models, two scenarios are distinguished:

First, the scenario of an existing model that is extended. By expanding the model, new
complexity is added. The benefits that come with this extra complexity must be assessed
to decide if they are worth the added complexity. While the larger model typically has the
advantage of making more sense and fitting the data better, it also has the disadvantage of
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being more difficult to understand and compute [Gelman et al. 2013]. The key questions to
answer are: (1) is the improvement in fit significant enough to justify the additional difficulty
in fitting, and (2) is the prior distribution on the additional parameters reasonable?

The second scenario involves two unrelated models, meaning that neither of the models is
a generalization of the other. In this case, the goal is usually not to pick one over the other.
Instead, it can be useful to combine them into a larger model as special cases [Gelman et al.
2013].
To quantify predictive performance, the most widely used metric in literature is the mean

squared error (MSE) [Pelánek 2015]:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝐸 (𝑦𝑖 |𝜃 ))2

It uses a single value as a point prediction for all future data and computes the sum of squared
differences from this point prediction. The MSE has the advantage of being easily computed
and directly interpretable, but the disadvantage of being less appropriate for models that are
far from the normal distribution [Gelman et al. 2013]. Point predictions do not represent the
full uncertainty over the unobserved data 𝑦 and are thus not optimal for quantifying a model’s
posterior predictive performance.

Several methods exist to estimate the out-of-sample predictive accuracy using available data.
One of the most popular approximation methods is the Widely Available Information Criterion
(WAIC). WAIC is a fully Bayesian approach for estimating the out-of-sample expectation,
referred to as the expected log pointwise predictive density elppd (see 3.2). Starting with the
computed log pointwise predictive density (computed lppd, see 3.1) a correction is added for the
effective number of parameters to adjust for overfitting [Gelman et al. 2013].

computed llpd =

𝑛∑
𝑖=1

𝑙𝑜𝑔( 1
𝑆

𝑆∑
𝑠=1

𝑝 (𝑦𝑖 |𝜃𝑠)) (3.1)

elppd =

𝑛∑
𝑖=1

𝐸𝑓 (𝑙𝑜𝑔𝑝𝑝𝑜𝑠𝑡 (𝑦𝑖)) (3.2)

Gelman et al. describe the characteristics of WAIC as more appealing than other approxima-
tion methods [Gelman et al. 2013]. During the development process of the original CogIUM
prototype, Aydinbas also utilized WAIC to compare different models [Aydinbas 2019].
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4 Concept - Application of Cognitive
Modeling to Serious Games

This chapter presents the concept and design choices for the expansion and remodeling of
the initial CogIUM model. For the remainder of this thesis, CogIUMa (CogIUM applied)
will denote the enhanced CogIUM model that is the result of this thesis. In the first section,
an identified usage scenario will be described step-by-step to clarify the expanded model’s
requirements. Since the overall concept’s goal is to apply CogIUM to an existing serious game,
a chain of several aspects has to be covered: First, input data needs to be made available,
and the format and content of the input data need to be defined. This process is described in
section 4.2. Using more input data also requires structural changes within the CogIUM model
since new observable variables are added. Additionally, some design flaws of the initial CogIUM
model are tackled, some of which were already identified in the conclusion of Aydinbas’ thesis
[Aydinbas 2019]. The expansion and remodeling of CogIUM is covered in section 4.3. Output
of the CogIUM model are posterior distributions for all latent cognitive variables, as described
in section 2.4. From those posterior distributions, an Adaptivity Response (AR) needs to be
computed. Furthermore, an approach is explored to distinguish online and offline inference,
allowing fast and slightly less accurate inference if there is no time for the whole sampling
process. In section 4.4, this will be described in detail. Finally, CogIUM is to be integrated into
the ELAI framework, which is discussed in section 4.5.

4.1 Usage Scenario

Before the concept for the extension of CogIUMwas developed, requirements were investigated
by creating a step-by-step usage scenario. The identified usage scenario is displayed in figure 4.1
and features the following steps:
Initially, the user opens up SLE and is asked to log in with a unique user id. SLE requests

an Adaptivity Response (AR) from the ELAI framework. The ELAI framework forwards this
request to CogIUMa. CogIUMa checks if there is a user model for that user id in the database.
If there is, an AR is computed from the current context and stored in the user model.
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ELAI

Empty Adaptivity Response

Update User Model

CogIUM Inference

get Priors from DB

Compute Adaptivity Response

Store in User Model

Compute Adaptivity
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Look for existing
User Model in DB

User starts LE streamlined
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mission

User model exists?

User plays adapted mission

Initialize new User Model

User finishes mission

Continue to play?
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xAPI
statements

getAdaptivityResponse(user, mission)

Yes
No

Figure 4.1: Usage Scenario for CogIUMa.

Subsequently, the AR is sent back to ELAI and from there to SLE, where the next mission is
to be adapted accordingly. If no user model is available, no Adaptivity Response is computed,
and a new user model is initialized. Next, the user starts the (potentially adapted) mission
and plays through it. For every action the user performs, SLE sends an xAPI statement to the
Learning Record Store (LRS).
Once he finishes the mission, xAPI data from that mission becomes available in the LRS.

CogIUMa polls this data from the LRS. For the current user and mission, prior distributions for
CogIUM’s HBM are retrieved from the user database. If an inference for that user has been
computed before, those prior distributions will come from the past inference. If not, the prior
distributions will be uninformative. The newly available xAPI data is parsed to obtain the
observed variables. With the prior distributions and the observed variables, CogIUM Inference
is performed. This means sampling the posterior distribution of all latent cognitive variables to
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obtain an approximation of the posterior distribution’s shape. For a detailed explanation, see
section 2.1.2. Since it is not feasible to make the user wait for the sampling process while he is
playing the game, a faster and slightly less accurate inference method is explored in section 4.4.
Once the posterior distributions become available, an AR, also referred to as score, must be
computed. This score is then stored in the user model and sent back to ELAI and from there to
SLE, where appropriate adaptation can take place for the next mission.

4.2 Feature Extraction

As input, CogIUMa polls xAPI data from an LRS. As can be seen in figure 4.2, this xAPI data is
a stream of xAPI statements. In the figure, a minimal example of an xAPI stream from SLE is
visualized by the software tool ELAISim [Streicher, Bach, and Roller 2019].

From this stream of xAPI statements, the observable variables of the CogIUM model are
extracted. For the original CogIUM model, those observable variables were mission success,
mission score andmission time. Since those values represent only part of the information
present in the xAPI statements, the goal was to extract additional information from the xAPI
statements as further input for CogIUM. This meant introducing new observable variables. One
of the main guidelines during the CogIUM model development was to ensure interoperability,
meaning that CogIUM can work with arbitrary educational serious games. Hence, the variables
it uses as input must not be specific to SLE but must also be present in comparable games.
Analyzing LE 2308, [Aydinbas 2019] identified potential candidates for additional observable
variables and categorized them by the level of their transferability (see table 4.1).

Name Level Variable Type Domain

task success performance k binary {0,1}
mission score performance s discrete [0,...,𝑚𝑎𝑥𝑖𝑡𝑒𝑚𝑠

mission time performance t continuous ℝ≥0

required rounds domain 𝑛𝑟𝑛𝑑 discrete [1,...,𝑚𝑎𝑥𝑟𝑜𝑢𝑛𝑑𝑠
required hints domain 𝑛ℎ𝑛𝑡 discrete [0,...(
location changes domain 𝑛𝑙𝑜𝑐 discrete [0,...(
dialogues domain 𝑛𝑑𝑖𝑎 discrete [𝑚𝑖𝑛𝑑𝑖𝑎𝑙𝑜𝑔𝑢𝑒𝑠 ,...(
detours game 𝑛𝑑𝑒𝑡 discrete [0,...(

Table 4.1: Observable variables in LE 2308, as identified by [Aydinbas 2019]
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The top section of table 4.1 shows the three variables that were implemented as observable
variables for the original CogIUM model by Aydinbas. For this thesis’s scope, the goal was to
utilize more data from the xAPI statements, which meant introducing new observable variables.
Because Aydinbas analyzed LE2308 and this work is focused on the application of CogIUM
to SLE, there are slight differences in what variables can be used. Some described variables
from the table are not present in SLE since it is a streamlined and hence minimal version of
Lost Earth. Required hints and required rounds are not available in SLE because the user is not
given the possibility to request hints, and the game is not round-based.
After investigating what variables are available in SLE and what informational value they

can add to the input data, it was decided to utilize the following two observable variables:

1. required attempts: In SLE missions, the user has to answer multiple-choice questions
about images or find hidden objects within an image. Thus, the number of attempts the
user required until he completed the mission appears to be valuable information about
the interaction. Furthermore, required attempts as a variable is transferable to all other
games that are mission-based.

2. detours: SLE requires the user to understand a procedure described in the mission
briefing: (1) Choose a sensor to take images, (2) Activate that sensor, (3) View the images
taken by the sensor, (4) Answer multiple-choice questions about the images. If the user
does not fully understand the instructions, he can be disoriented during the mission
and perform actions that are unnecessary for the mission’s progress. Those actions are
identified as detours. Although Aydinbas listed detours as a game-specific variable, it is
still easy to transfer to other games: An ideal path from mission start to mission end
has to be defined, e.g. by letting an expert play the mission and recording the xAPI
statements. Detours can then easily be calculated by comparing a user’s xAPI statements
to those of the expert.
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Figure 4.2: Minimal example of an xAPI stream from SLE, visualized by ELAISim [Streicher,
Bach, and Roller 2019].
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4.3 CogIUM Enhancements and Extensions

To account for the newly added observable variables, the CogIUM model had to be expanded.
Additionally, some flaws in the model that were already discovered by [Aydinbas 2019] required
remodeling and a revision of the latent variables’ prior distributions. Other flaws were only
discovered during this thesis and guided new design choices for parts of the model. While the
iterative development process is the topic of section 5.2, the following section will cover the
concept that guided the development and design of the enhanced CogIUM model.

As described in section 4.2, it was decided to add the observable variables required attempts
and detours to the model. Adding an observable variable to an HBM always entails the design
choice for the variable’s distribution and how this distribution is parameterized. Since the
model is hierarchical, those parameters themselves will also originate from a parameterized
distribution. Additionally, some existing structures are remodeled due to identified flaws in
the model’s ability to explain plausible data. In the following sections, those design choices are
presented along with the reasoning that motivated them.

4.3.1 Remodeling of existing structures

In the discussion of his final CogIUM model, Aydinbas establishes that the model works best
for one concept and can successfully explain three continuous observed variables. When there
is more than one concept, the model struggles to explain the data, and the model’s performance
decreases with an increased number of concepts. Furthermore, Aydinbas states that this was
to be expected since some important variables are not given the flexibility to vary between
missions [Aydinbas 2019]. This was also identified as a flaw in the initial analysis at the start
of this thesis. Mainly, two latent cognitive variables are concerned: Motivation𝑚𝑝 and prior
knowledge𝜓𝑝 . Both were modeled as personal variables in Aydinbas’ final model, meaning
the model could learn an individual manifestation of the variable for each user 𝑝 . However,
for a given user, motivation and prior knowledge could not vary between missions. This does
not appear plausible and hampers the model’s ability to explain differences in a given user’s
performance in two equally complex missions. Therefore, it was decided to change those
variables to be dependent on both user 𝑝 and concept 𝑐 .

Prior knowledge𝜓𝑝 was subsequently renamed to prior knowledge𝜓𝑝𝑐 and will be referred
to as such from now on. Semantically, the change means that a user is now assumed to
potentially have different levels of domain knowledge for different missions. This appears very
plausible, especially if missions cover a variety of knowledge domains.

Accordingly, the same is done for motivation𝑚𝑝 , which will be denoted as motivation𝑚𝑝𝑐 .
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Thus, a user’s assumed motivation is now allowed to vary across missions.
Another issue concerned the modeling of the variable mission time 𝑡𝑝𝑐 . During the iterative

development process, it became evident that the model’s posterior predictive function was
not able to represent the observed data. Therefore, several changes were introduced to the
modeling of the variable. How those modifications were motivated is covered in detail in
section 5.2. In the final model of Aydinbas, mission time 𝑡𝑝𝑐 was modeled with the following
distribution: 𝑡𝑝𝑐 ∼ N(𝑡𝑚𝑖𝑛 + 𝛼𝑡 · (1 − 𝑔𝑐𝑙𝑝𝑐) − 𝛽𝑡 · 𝛿𝑝𝑐 , 𝜎𝑡 ). The multiplicative factors 𝛼𝑡 and 𝛽𝑡

are changed from personal variables to personal and conceptual variables to provide the model
with more flexibility. Additionally, the term for the distribution’s mean value is changed to
also include prior knowledge 𝜓𝑝𝑐 as an inversely proportional component. Hence, the final
formula for mission time’s distribution is given by 𝑡𝑝𝑐 ∼ N(𝑡𝑚𝑖𝑛 + 𝛼𝑡𝑝𝑐 · (1 − 𝑔𝑐𝑙𝑝𝑐) − 𝛽𝑡𝑝𝑐 ·
𝛿𝑝𝑐 + 𝜌𝑡𝑝𝑐 · (1 −𝜓𝑝𝑐), 𝜎𝑡 ). As can be seen in section 5.2, this modification yielded a significant
improvement in the model’s predictive performance.

4.3.2 Required Attempts as observable variable

The purpose of adding required attempts as an observable variable is to feed additional infor-
mation into the CogIUM model, allowing for a better-informed classification. For the model to
explain the new observable variable, two things have to be decided: First, what distribution is
assumed for the observable variable. The observable variable is thought of as a probability
distribution, and future observed values are assumed to originate from this distribution. Hence,
the distribution must be designed in a way that future observed values could plausibly stem
from it. Since the model is hierarchical, this does not mean that the future data already has to
be known when designing the model. Instead, the observable variable’s distribution parameters
are variables of the model themselves and can be learned when observing new data. Specific
to CogIUM is that the latent variables are ascribed a cognitive meaning.
Accordingly, it has to be determined what latent cognitive variables should influence the

observed variable required attempts. For the following section, required attempts will be
designated as 𝑎𝑝𝑐 , which is also the notation in the expanded CogIUM model. In SLE, users are
asked to answer multiple-choice questions. If they know the answer, they can obviously pick
the right solution at first try, otherwise, they have to guess. If they do not know the answer
but can eliminate one possibility, they are still likely to need fewer attempts than if they had
no prior knowledge at all. This line of reasoning is transferable to all other knowledge-based
games, not only with multiple-choice questions: The more prior knowledge a user has, the
fewer attempts he will probably require to complete the task successfully. Therefore it was
concluded that the latent cognitive variable prior knowledge, denoted as𝜓𝑝𝑐 in CogIUM (see
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section 2.4), should influence the expected distribution of required attempts 𝑎𝑝𝑐 . For the
distribution itself, a normal distribution was chosen. This is the most common choice for an
observable variable since it simply means that the mean value parameterized by the model
is regarded to be the most likely observation, and the further observations divert from this
expected mean, the less likely they are. The mean value of required attempts’ distribution is
postulated to have the formula 𝜇𝑎 = (1 −𝜓𝑝𝑐) · 𝛾𝑐 . Variable𝜓𝑝𝑐 denotes the prior knowledge
of a specific user 𝑝 for a specific concept 𝑐 and is assumed to be inversely proportional to
the expected mean value 𝜇𝑎 . Because 𝜓𝑝𝑐 is normalized to the range [0,1], it is multiplied
by a factor 𝛾𝑐 to obtain the expected mean value for required attempts. 𝛾𝑐 is specific to a
concept 𝑐 but equal for all users across one concept. This design choice was motivated by the
differences in mission length and complexity. In a long, complex mission, it is assumed that
users without prior knowledge can require a large number of attempts. In contrast, in a short
mission, they will find a solution after a limited number of attempts, even without any prior
knowledge. To summarize, the following distribution is postulated for required attempts 𝑎𝑝𝑐 :
𝑎𝑝𝑐 ∼ N((1 −𝜓𝑝𝑐) · 𝛾𝑐 , 0.5)

4.3.3 Detours as observable variable

As a fifth observable variable, detours 𝑑𝑝𝑐 was added to the model. In contrast to the variable
required attempts 𝑎𝑝𝑐 , the idea was to capture how direct the user’s path to completing
the mission is. Several things can cause a detour: If the user is lost or overstrained, he will
involuntarily take detours since he does not know the direct path. This matter is reflected in the
model through an inversely proportional influence of prior knowledge𝜓𝑝𝑐 and free working
memory capacity 𝛿𝑝𝑐 . Another possible explanation for a detour might be an explorative
playing style of the user: Even though the user knows the direct path to completion, he might
decide to discover other dialogues and sections that the game has to offer. This is modeled by an
explorative factor 𝑒 𝑓𝑝 , which is designed to represent how curious the player’s approach to the
game is. As for required attempts 𝑎𝑝𝑐 , a normal distribution was also chosen to model detours
𝑑𝑝𝑐 . The distribution is parameterized as follows: 𝑑𝑝𝑐 ∼ N((1−𝜓𝑝𝑐)·𝑚𝑑𝑐+(1−𝛿𝑝𝑐)·𝑓 𝑏𝑝+𝑒 𝑓𝑝 , 0.5).
𝑚𝑑𝑐 is a concept-specific factor that maps the normalized range of [0,1] for𝜓𝑝𝑐 to the range of
required detours. It is allowed to vary between missions for a similar reason as𝛾𝑐 in the formula
for required attempts’ distribution (see 4.3.2): Depending on the complexity of a mission, the
level of prior knowledge can influence the number of detours to a varying extent.

A visualization of the final model’s structure is presented in figure 4.3. To enable comparison
with Aydinbas’s final CogIUM model presented in section 2.4, all newly introduced variables
are marked by a thick border. Additionally, the layout is consistent with figure 2.7.
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Figure 4.3: Final CogIUM5 model after expansion and restructuring, as it is used within the
CogIUMamicroservice. All newly introduced variables are marked by a thick border.
The layout is consistent with the visualization of Aydinbas’ final model in figure 2.7
to facilitate comparison. This is the model used during the user study.
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4.4 Score Computation

Score computation bridges the gap between the CogIUM model’s output and what the ELAI
framework expects as an Adaptivity Response (AR). To reiterate, the output of CogIUM are
posterior distributions for all latent cognitive variables. Those latent cognitive variables include
motivation𝑚𝑝𝑐 , prior knowledge 𝜓𝑝𝑐 , total cognitive load 𝑐𝑙𝑝𝑐 , intrinsic cognitive load 𝑖𝑐𝑙𝑐 ,
extrinsic cognitive load 𝑒𝑐𝑙𝑐 and germane cognitive load 𝑔𝑐𝑙𝑝𝑐 . An explanation of Cognitive
Load Theory (CLT) and how its different components are defined can be found in 2.3.

From those posterior distributions, an Adaptivity Responsemust be computed. Since CogIUM
is integrated as a micro-service within the ELAI framework, the AR needs to conform to the
ELAI specifications of an AR.

An AR is defined in ELAI as 𝐴𝑅(𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝐶, 𝑇𝑖𝑚𝑒 𝑡) = (𝑃𝐶 (𝑡), 𝐴𝐶 (𝑡), 𝑆𝐶 (𝑡)) [Streicher and
Roller 2015]. Accordingly, it comprises three components:

• Performance Score 𝑃𝐶 (𝑡): Scalar value in the range [0,1] that encodes the user’s overall
progress within context 𝐶 at time 𝑡 .

• Assistance Level 𝐴𝐶 (𝑡): Scalar value in the range [0,1] that represents a user’s need for
assistance within context 𝐶 at time 𝑡 .

• Skill Level 𝑆𝐶 (𝑡): Scalar value in the range [0,1] that models the estimated competence
level of a user for context𝐶 at time 𝑡 . This value can be independent of 𝑃𝐶 (𝑡) and 𝐴𝐶 (𝑡),
since a beginner might coincidentally score high in a mission, even though he has a low
skill level.

Regarding Skill Level 𝑆𝐶 (𝑡), the computation from the posterior distributions is very straight
forward: Prior knowledge 𝜓𝑝𝑐 is the cognitive latent variable in CogIUM that represents exactly
that: The skill level of a user 𝑝 for a concept or context 𝑐 . Additionally,𝜓𝑝𝑐 is already normalized
to the range [0,1]. Hence, the mean value of prior knowledge’s posterior distribution can be
used as the score for skill level 𝑆𝐶 (𝑡).
For Assistance Level 𝐴𝐶 (𝑡), retrieving a meaningful score from the posterior distributions

is not as straightforward. However, some plausible relationships can be postulated: If the
user’s germane cognitive load is lower than his intrinsic cognitive load, he does not dedicate as
many resources to learning as required. Accordingly, he probably needs assistance. A detailed
explanation of this scenario can be found in section 2.3. Generally, if the user’s motivation is
very low, this might also imply a need for assistance. Taking those considerations into account,
it was decided to model Assistance Level 𝐴𝐶 (𝑡) as a weighted sum of the latent cognitive
variable’s predicted mean values. As part of the user study (see section 6.1), users were asked
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for a self-assessment of their need for assistance. Rather than postulating the weights of
the weighted sum, it was decided to learn them from the gathered user data: For every user,
the latent cognitive variables’ predictive mean values were inferred. Additionally, the user’s
self-assessment regarding their need for assistance was collected. The problem of finding
optimal weights for the linear sum to map the predicted mean values to the self-assessments
can be formulated as an overdetermined system of linear equations. Optimal weights that
minimize the squared distance between the weighted sum and the self-assessments can be
found through linear compensation. This is covered in-depth in section 5.3.

As for Performance Score 𝑃𝐶 (𝑡), it was determined that there is no obvious way to compute
a meaningful value from the latent cognitive variable’s posterior distributions. Therefore, it
was decided to stick with the first two scores presented and potentially leave the computation
of the AR’s third component to a different micro-service within ELAI.

4.5 ELAI Integration

From the offset, the goal of this thesis was to integrate CogIUMa into the ELAI framework as a
micro-service. As an adaptivity framework, ELAI receives adaptivity requests from SLE and
sends back an adaptivity response. Internally, it can use several different micro-services for the
computation of the adaptivity response. For the explanations in this section, we assume that it
uses CogIUMa as the micro-service. Figure 4.4 visualizes the interaction of all components
involved.

Figure 4.4: Architecture diagram - CogIUMa integration into ELAI adaptivity framework
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During user interaction with SLE, the xAPI tracker integrated within SLE sends xAPI
statements to the LRS. Adaptivity requests can be sent to ELAI by SLE on various occasions: If
functionality to request a hint is added to SLE, such a user request will trigger an adaptivity
request. Additionally, when the user is about to start a mission, SLE can request an adaptivity
response and adapt the mission accordingly. Once ELAI receives an adaptivity request, it
forwards the adaptivity request to CogIUMa. CogIUMa provides a REST interface to receive
adaptivity requests, meaning adaptivity requests can be sent as HTTP GET requests. Adaptivity
requests are parameterized with a context that includes mission and user id. On receiving the
adaptivity request, CogIUMa polls the corresponding xAPI data from the LRS. Subsequently,
it performs the inference, which consists of the steps described in the previous sections: (1)
Extract features from the xAPI statements (see section 4.2), (2) Perform sampling to approximate
posterior distributions, (3) Compute adaptivity response from the posterior distributions (see
section 4.4). Next, CogIUMa sends the adaptivity response back to ELAI in the form of an
HTTP response. ELAI forwards the adaptivity response to SLE, where adequate manifestation
of adaptivity can take place.
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5 Implementation

The following chapter will present the implementation process of CogIUMa, based on the
concept described in chapter 4. Design choices that were made due to findings during the
implementation process will be motivated and described in the following sections.
Basis for all implementation in this thesis was the cogium Python package created by

[Aydinbas 2019]. It includes Aydinbas’ final CogIUM model and is based on the Python library
PyMC3 (see section 2.4). This model was used as a starting point and was then iteratively
expanded and enhanced. Throughout the implementation of CogIUMa, the model was validated
using two exemplary datasets. In line with the structure of chapter 4, the following sections
will describe the implementation of required components, ordered according to the CogIUMa
processing chain: First, generation and parsing of xAPI input data is discussed. Subsequently,
the enhancement of CogIUM itself is presented. Finally, the adaptivity response’s computation
is also presented from an implementation perspective.

5.1 Input Data - Generating and Parsing xAPI Statements

On receiving an adaptivity request by the ELAI framework (see section 4.5), CogIUMa polls
the corresponding xAPI data from an LRS and uses it as input. Therefore, functionality needed
to be implemented to extract all observable variables from the xAPI statements. To reiterate,
those observable variables are mission success, mission score, mission time, required attempts
and detours.
In order to implement parsing functionality for xAPI statements, xAPI data was needed

for testing. Additionally, xAPI data was later required to validate the CogIUMa processing
chain. To quickly obtain xAPI data at scale as input for CogIUMa, the idea was to generate
it synthetically. This task is nontrivial since the statements have to be coherent and reflect
patterns of xAPI statements that could come out of real user interaction with a serious game.
Several approaches to the generation of xAPI data were explored and will now be presented
briefly.
DATASIM is an open-source tool developed by Yet Analytics and funded by the Advanced

Distributed Learning Initiative at US DoD. The project’s objective is to provide a flexible model
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that can be customized to a specific use case and then automatically generate xAPI data that
is coherent with that usage scenario’s specifications. DATASIM is an acronym for Data and
Training Analytics Simulated Input Modeler. To allow for this customization, the tool provides
several configuration files in JSON format. The main configuration file is the so-called profile.
A DATASIM profile describes what verbs and objects are available for xAPI statements, defines
statement templates and patterns in which the statements are allowed to occur. Since the tool
is currently still in its alpha phase, the documentation is not very comprehensive, and the
functionality is also not fully available yet. Still, it was possible to create a DATASIM profile
that describes vocabulary and basic patterns of statements resembling user interaction data
with a serious game like Lost Earth. However, configuring the xAPI statements to be generated
exactly as required for the testing of CogIUMa proved to be too time-consuming and tedious.
Therefore, this approach was no longer followed, and different options were explored.

To simulate user behaviour and systematically test external adaptivity software, the ElaiSim
tool was developed by [Streicher, Bach, and Roller 2019]. It allows the visualization of an
xAPI statement stream, defining statement templates and adding them to the statement stream.
While this process is less automated than the approach with DATASIM, it is intuitive to use
and allows the creation of xAPI statements that strictly conform to the requirements for the
input of CogIUMa. Furthermore, the dataset for testing was not required to be very large.
Aydinbas states that the number of observations the model needs to make accurate predictions
is relatively low. Already with five subjects, predictions improve up to the point where they
are spot on [Aydinbas 2019]. Two datasets were generated using ElaiSim, both containing
ten users and two missions: The first dataset D1 features five users from a high-performing
group and five users from a low-performing group. For the sake of simplicity, they will be
referred to as high-performing users and low-performing users in the following explanation.
High-performing users completed both missions successfully with a score of over 50 percent,
low-performing users failed both missions with a score of less than 50 percent. In the second
dataset D2 there are again five high-performing users, identical to the high-performing users
in dataset 1. However, instead of low-performing users, dataset D2 features five users that
all succeeded in the first mission but failed in the second mission. The intention behind the
design of D2 was to investigate how well the model handles a user’s change in performance
across missions.
A third approach that was explored was to generate the xAPI data manually by simply

playing SLE. For the user study setup (see section 6.2), an xAPI tracker had to be built into SLE
anyway. Therefore, we decided to move its implementation up in time so that it could already
be used to generate xAPI data for testing. This allowed for easy generation of xAPI data by
simply playing through the missions repeatedly. By doing that with intentional variation in
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performance, dataset D3 was created. It features ten users with varying performance.
With datasets D1, D2 and D3 as testing data, the parsing functionality was implemented.

Given the xAPI data, it extracts the observable variables mission success, mission score, mission
time, required attempts and detours for every user and every mission: Mission success and
mission score can be directly retrieved from the xAPI statement that is sent on completion
of the mission. It contains a boolean for success and a numerical value for the mission score.
Mission time can easily be calculated with the timestamps of the started mission statement and
the completed mission statement. Required attempts can be extracted by counting the failed
mission statements per user and mission. For obtaining the number of detours, some additional
effort is required: For both SLE missions, it was defined how many necessary statements the
shortest path from mission start to mission completion includes. To retrieve the number of
detours, statements between mission start and mission completion are counted, and the length
of the shortest path is subtracted. While the transfer of this calculation to other games does
require some effort, it is still manageable. A shortest path for each mission can be obtained by
letting an expert play all missions and recording the xAPI data.

The xAPI parser is included as a Python script within the cogium package.

5.2 CogIUMa - Experimental Iterative Development

After generating sufficient user interaction data as input for testing, the iterative development of
CogIUMa started. Aydinbas’ final CogIUM model formed the starting point of the development.
To reiterate, this model accounts for the three observable variables mission success, mission
score and mission time. As a first measure, the posterior predictive functions for those three
variables are analyzed using the datasets D1, D2 and D3 as input.

Looking at the posterior predictive functions for the three observable variables regarding
dataset D1, the model seems to be able to reproduce the main trends in the observed data.
However, the model’s posterior predictive functions regarding dataset D2 differ significantly
from the observed data, especially for the variable mission time. Figure 5.1 showcases the
described problem. The estimated mean value of mission time is roughly the same for all
users, causing the spike of the posterior predictive mean function in the plot. Observations
and predicted mean values are both shown as a kernel density estimate, observations in black
and predicted mean in blue. The green line represents the average prediction over all users
for this mission. It is evident that there is is a large discrepancy between observations (black)
and posterior predictive mean function (blue). This does not come as a surprise, since the
discovered flaws described in section 4 already indicated that the model will struggle to explain
a user’s variance in performance. Intuitive explanations for individual performance variation
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could either be the change of a users motivation over time, or different levels of prior domain
knowledge regarding the different missions.
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Figure 5.1: Posterior predictive function of mission time 𝑡𝑝𝑐 for mission 1 in dataset D2

Accordingly, the development approach’s starting point were the flaws identified in sec-
tion 4.3: The latent cognitive variables motivation𝑚𝑝 and prior knowledge 𝜓𝑝 are both modeled
as personal variables and are thus not allowed to change across missions. As described in
section 4.3, it was decided to remodel those variables to be dependent on both user 𝑝 and
mission 𝑐 . Therefore, they are denoted motivation𝑚𝑝𝑐 and prior knowledge 𝜓𝑝𝑐 from now on.

In Aydinbas’ final CogIUMmodel,mission time 𝑡𝑝𝑐 wasmodeled by the following distribution:
𝑡𝑝𝑐 ∼ N(𝑡𝑚𝑖𝑛 + 𝛼𝑡 · (1 − 𝑔𝑐𝑙𝑝𝑐) − 𝛽 · 𝛿𝑝𝑐 , 𝜎𝑡 ). Expanding this formula, it was decided that prior
knowledge𝜓𝑝𝑐 should also have an influence on mission time 𝑡𝑝𝑐 : The higher the level of prior
knowledge, the less time the user is expected to take for completing the mission. To provide the
model with even more flexibility for the modeling of mission time, the multiplicative factors
𝛼𝑡 and 𝛽𝑡 were expanded from personal variables to personal and conceptual variable 𝛼𝑡𝑝𝑐 and
𝛽𝑡𝑝𝑐 . Furthermore, less informative prior distributions were assumed for 𝛼𝑡𝑝𝑐 and 𝛽𝑡𝑝𝑐 to allow
for more deviation in mission times between different users. The final formula for mission
time’s distribution is given by 𝑡𝑝𝑐 ∼ N(𝑡𝑚𝑖𝑛 +𝛼𝑡𝑝𝑐 · (1−𝑔𝑐𝑙𝑝𝑐) − 𝛽𝑡𝑝𝑐 · 𝛿𝑝𝑐 + 𝜌𝑡𝑝𝑐 · (1−𝜓𝑝𝑐), 𝜎𝑡 ).

After this extensive remodeling process, the model was able to capture the observed data’s
structure significantly better. While the accuracy for the other observable variables remained
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the same, the prediction’s accuracy for mission time of mission 1 in dataset D2 improved a lot.
This can be seen by comparing figure 5.2 to figure 5.1: Figure 5.2 shows the posterior predictive
function for mission time after the extensive remodeling process described above. In both
figures, the observed data are the values of mission time for mission 1 in dataset D2, only the
y-axis is scaled differently. While the prediction is not perfectly aligned with the observation,
the remodeling was still deemed successful due to the large improvement.
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Figure 5.2: Posterior predictive function of mission time 𝑡𝑝𝑐 for mission 1 in dataset D2, after
extensive remodeling.

Furthermore, the standard deviation of mission score 𝑠𝑝𝑐 is represented in the original
CogIUM model as a global variable. Thus, the score is assumed to vary the same for all subjects
and all missions. This assumption seems implausible since some missions might suit all users
roughly the same, while other missions are easy for some users but difficult for others. It is
also reasonable to assume that the performance throughout several missions might vary more
for some users than for other users. Accordingly, the standard deviation 𝜎𝑠 of the mission
score was also remodeled to be dependent on both user 𝑝 and mission 𝑐 .

Once the described remodeling of existing structures finished, the model was able to repro-
duce all three observable variables (mission success, mission score and mission time) reasonably
well for all three datasets D1, D2 and D3.

Subsequently, the implementation of the two newly introduced observable variables began:
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Required attempts and detours.
As motivated in section 4.3, required attempts 𝑎𝑝𝑐 is modeled by the following distribution:

𝑎𝑝𝑐 ∼ N((1 −𝜓𝑝𝑐) · 𝛾𝑐 , 0.5). Initially, factor 𝛾𝑐 was designed as a global variable independent
of a specific concept 𝑐 . However, in a first experimental sampling run it became evident
that a global multiplicative factor 𝛾 is not adequate: For the experimental run, the SLE user
interaction data from dataset D3 was used as input. In D3, the values of required attempts for
mission 1 are in a lower range than those for mission 2. This is likely caused by the fact that
mission 2 is longer and consists of more subtasks. Thus, the multiplicative factor was modeled
to be dependent on concept 𝑐 and is therefore denoted 𝛾𝑐 . Overall, the model’s predictive
performance for required attempts regarding dataset D3 is reasonably accurate, as can be seen
in figure 5.3: Observations are marked by the dark blue stars. The blue box represents the area
in which 50 percent of the posterior predictive samples lie, and the horizontal line marks the
sample median. Apart from some minor deviations, the predictions are all very close to the
observation. Even the outliers in mission two are represented correctly.
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Figure 5.3: Box plots of posterior predictive samples for required attempts 𝑎𝑝𝑐 in dataset D3.
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After successfully implementing required attempts, the next step was to expand the model
further to also account for detours 𝑑𝑝𝑐 . As motivated in section 4.3, detours 𝑑𝑝𝑐 is modeled
by a normal distribution with a mean value influenced inversely proportional by both prior
knowledge 𝜓𝑝𝑐 and free working memory capacity 𝛿𝑝𝑐 . The distribution is defined by the
following formula: 𝑑𝑝𝑐 ∼ N((1−𝜓𝑝𝑐) ·𝑚𝑑𝑐 + (1−𝛿𝑝𝑐) · 𝑓 𝑏𝑝 +𝑒 𝑓𝑝 , 0.5). The predictive accuracy
for detours is not as good as for required attempts, but the observed data’s main features are
still captured. To avoid overfitting, no new latent variables were introduced only to improve
predictive accuracy for the observed data.

This concluded the iterative development of CogIUM. The final model is called CogIUM5
because it accounts for five observable variables, and is used for the CogIUM inference within
the CogIUMa microservice. Along with all model iterations by Aydinbas, it is included in the
cogium Python package.

5.3 Score Computation

Score computation is required to map the latent cognitive variables’ posterior distributions to
an adaptivity response. As explained in section 4.4, the adaptivity response’s format is defined
by the ELAI framework: It contains the three components Performance Score 𝑃𝐶 (𝑡), Assistance
Level 𝐴𝐶 (𝑡) and Skill Level 𝑆𝐶 (𝑡). In the analysis performed in section 4.4, it was decided to
only model the second and third component Assistance Level 𝐴𝐶 (𝑡) and Skill Level 𝑆𝐶 (𝑡).

Skill Level 𝑆𝐶 (𝑡) is represented within CogIUMa as prior knowledge𝜓𝑝𝑐 ’s posterior predictive
mean. Therefore, it can be obtained from the sampling trace summary and was straightforward
to implement.

For Assistance Level 𝐴𝐶 (𝑡), the computation is not as trivial. As described in section 4.4, it
was decided to model a user’s assistance level as the weighted linear sum of the latent cognitive
variables’ posterior distributions’ mean values. Since motivation and germane cognitive load
vary only marginally between users, it was decided to exclude them from the weighted sum.
For the computation of a user 𝑖’s assistance level, the four cognitive variables cognitive load 𝑐𝑙𝑖 ,
intrinsic cognitive load 𝑖𝑐𝑙𝑖 , extrinsic cognitive load 𝑒𝑐𝑙𝑖 , and prior knowledge 𝜓𝑖 are used. Given
inferred mean values for the cognitive variables and ground truth assistance levels 𝑎𝑙𝑖 , the
weights 𝛼1,...,𝛼5 can be determined by minimizing the residual of an overdetermined equation
system:
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argmin
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Optimal weights𝛼 = (𝛼1,...,𝛼5) can be found by solving the normal equation: 𝐴𝑇 ·𝐴·𝛼 = 𝐴𝑇 ·𝑎𝑙 ,

where 𝐴 denotes the matrix of cognitive variables’ mean values and 𝑎𝑙 denotes the vector of
assistance levels. After finding optimal 𝛼1,...,𝛼5 that minimize the term above, we obtain the
following formula for our sought-after assistance score 𝑋 :

𝑋𝑖 = 𝛼1 · 𝑐𝑙𝑖 + 𝛼2 · 𝑖𝑐𝑙𝑖 + 𝛼3 · 𝑒𝑐𝑙𝑖 + 𝛼4 ·𝜓𝑖 + 𝛼5

Since 𝑋𝑖 can also take on values less than 0 or greater than 1, it has to be clipped to the range
of [0,1] to obtain 𝐴𝐶 (𝑡):

𝐴𝐶 (𝑡) =


0, if 𝑋𝑖 < 0

𝑋𝑖 , if 0 ≤ 𝑋𝑖 ≤ 1

1, else

From the user study, we get 44 linear equations: Each of the 22 users played two missions.
For each of those missions, CogIUM calculated posterior mean values for the cognitive variables
cognitive load 𝑐𝑙 , intrinsic cognitive load 𝑖𝑐𝑙 , extrinsic cognitive load 𝑒𝑐𝑙 , and prior knowledge 𝜓 .
Additionally, the user’s reported a perceived need for assistance in the self-assessment survey
for each mission. This gives 44 equations, where the cognitive variables have to be mapped to
the self-assessed assistance level with a weighted sum. Accordingly, the matrix in the term
above has 44 rows. Performing linear compensation to retrieve optimal values 𝛼1,...,𝛼5 yields
the following results: 𝛼1 = 0.45, 𝛼2 = 0.93, 𝛼3 = −0.93, 𝛼4 = −0.96, and 𝛼5 = 0.35.
Therefore, the following formula is postulated for the assistance level 𝐴𝐶 (𝑡) of user 𝑖:

𝑋𝑖 = 0.45 · 𝑐𝑙𝑖 + 0.93 · 𝑖𝑐𝑙𝑖 − 0.93 · 𝑒𝑐𝑙𝑖 − 0.96 ·𝜓𝑖 + 0.35

𝐴𝐶 (𝑡) =


0, if 𝑋𝑖 < 0

𝑋𝑖 , if 0 ≤ 𝑋𝑖 ≤ 1

1, else

While the values 𝛼1,...,𝛼5 have been calculated mathematically to minimize the residual
of the overdetermined equation system, they can also be interpreted with regards to their
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semantic meaning: 𝛼2 is the largest positive 𝛼 value and is the weight that corresponds to
intrinsic cognitive load 𝑖𝑐𝑙 . Accordingly, intrinsic cognitive load has a positive linear influence
on the assistance level: The higher the intrinsic complexity of a mission, the higher the user’s
need for assistance. 𝛼1 is the second-highest positive 𝛼 value and determines the influence of
total cognitive load 𝑐𝑙 on the user’s assistance level. Again, the relationship is positive and
linear, meaning that higher values for a user’s total cognitive load lead to a higher assistance
level. Prior knowledge𝜓 has the largest negative linear influence on the assistance level: The
corresponding weight, 𝛼4, was calculated to be −0.96. Accordingly, a higher level of prior
knowledge results in a lower predicted assistance level. Extrinsic cognitive load 𝑒𝑐𝑙 also has a
negative linear on the assistance level, it is weighted with 𝛼3 = −0.93.
Although the weights were results of the above term’s mathematical minimization, their

meaning is still largely in line with the expected semantic relationships: Users with high prior
knowledge will likely not need any assistance. When a task is highly complex (high 𝑖𝑐𝑙 ), users
are more likely to need assistance. A highly complex task often causes users to experience a
high total cognitive load. Therefore, it is to be expected that a high cognitive load also leads
to a higher assistance level. Since the calculated weights 𝛼1,...,𝛼5 were derived from the user
study data, additional data is required to validate them.

5.4 CogIUMa as a micro-service - REST API

To integrate CogIUMa within the ELAI framework, a RESTful webservice was built using the
Python library FastAPI. FastAPI is a modern, high-performance framework that allows to
quickly build REST APIs [Tiangolo 2021]. Figure 5.4 shows an overview of possible requests
that can be sent to CogIUMa.

  

  

  

  

  

Figure 5.4: REST API for CogIUMa microservice
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The most important request for CogIUMa’s functionality as a microservice is the get-
adaptivity-response request. It triggers the whole CogIUMa pipeline, as described in sec-
tions 4.2, 4.3 and 4.4: Given the user id, CogIUMa polls the corresponding xAPI statements
from the LRS. Those statements are then parsed and used as input for the inference. Eventually,
the computed scores are returned as an adaptivity response.
When a game sends an adaptivity request to ELAI and thus to CogIUM, waiting over a

minute until the CogIUM sampling process finishes is not an option. Therefore, a concept
was introduced to distinguish between offline and online inference. For offline inference, the
normal CogIUM sampling is performed since waiting a couple of minutes for the result is
feasible. For the online inference, a new concept is introduced: The 5-dimensional CogIUM
input vector per user and mission consists of mission success, mission score, mission time,
required attempts and detours. To enable fast inference, a large number of input vectors is
taken from this 5-dimensional vector space. For each input-vector, the CogIUM sampling
is performed, and thus, inference values for those inputs are precomputed. Those values
are all stored in a precomputation database. Performing this computation for roughly 6000
input vectors took about three days on a modern laptop’s CPU. However, this only has to
be computed once. For online inference, the xAPI statements are parsed the same as for
offline inference to obtain the input vector. Next, instead of performing CogIUM sampling,
the nearest neighbour in the precomputation database is searched for: Since all input vectors
are 5-dimensional vectors with real-valued components, the euclidian distance can be used as
a metric for distance. After looking up the nearest neighbour, CogIUMa returns the nearest
neighbor’s precomputed adaptivity response. Obviously, this online inference becomes more
accurate the larger the precomputation database is. The inference mode can be passed to
CogIUMa as a query parameter of the adaptivity response request, default mode is online.
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6 Evaluation - User Study

After the iterative development of the CogIUM model had finished, the coherent next step
was to find a way to validate the model. Since no real-world ground truth data existed for the
metrics that the model tries to infer, a user study appeared to be the logical choice. Supporting
this approach, [Aydinbas 2019] stated in his master’s thesis that all of his results "must be
examined by a detailed model evaluation in the form of a user study still to be carried out".
The main idea for the user study can be described as such: Have users interact with a

serious game and collect all their click data. After their interaction, ask the users about their
self-assessment regarding the latent cognitive variables cognitive load, motivation, and prior
knowledge. Let the CogIUM model compute its inference with the collected click data as input
and compare the inference output to the users’ self-assessments.
How the user study and the questionnaire were designed, what the hypotheses were, and

what results the user study yielded will be discussed in the following sections.

6.1 Concept and Hypotheses

In order to carry out the user study, a serious game that users could interact with was required.
It had to be web-based since the current situation with Coronavirus did not allow for a user
study to be carried out in person. Additionally, the choice to make the whole user study online
came with the benefit of potentially more users. Streamlined Lost Earth (SLE) was chosen as a
minimal serious game prototype that runs in a browser. It consists of two playable missions
that are both relatively small. To collect data on the cognitive latent variables, the users are
asked to fill out a questionnaire after each of the missions.

The main latent cognitive variables that the CogIUM model tries to infer are cognitive load,
motivation, and prior knowledge. Without being able to directly measure those variables, the
only feasible way to gather real-world data on those variables in a realistic setting is through a
self-assessment of the users. Therefore, a questionnaire was built with the goal to receive a
realistic self-assessment of the users for the mentioned variables.
For assessing cognitive load in a questionnaire, the gold standard is the NASA Task Load

Index (NASA TLX) [Hart and Staveland 1988]. It consists of two separate parts, as was explained
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in section 3.1.2: In the first part, the users are asked to rate several aspects that can contribute to
cognitive load on a Likert scale. In the second part, the users compare those aspects pair-wise,
each time selecting which aspect had the greater contribution to their cognitive load. Those
pair-wise comparisons determine the weight with which the Likert scales from the first part
influence the total cognitive load computation. In addition to the NASA TLX, the questionnaire
was also designed to include a question that directly asks the users to rate their cognitive
load on a 7 point Likert scale. This was done to examine the difference between the results of
the NASA TLX and the direct question about cognitive load. However, the NASA TLX was
chosen to be the primary metric for cognitive load since it is assumed to be more accurate than
straight-up asking the users about their cognitive load.

Regarding the variables motivation and prior knowledge, the questionnaire directly asks the
user for a rating on a 7-point Likert scale. This design choice was made for two reasons: For
both those variables, there is no gold standard to assess them through a questionnaire like
the NASA TLX for cognitive load. Furthermore, it was assumed that motivation and prior
knowledge are more tangible than cognitive load, and thus users might find it easier to rate
those variables directly.
Another point of interest was how the users would react to the model’s inferences about

them. More precisely, as how accurate would the users rate the model’s inferences if they
saw them visualized in an understandable way? To examine this question, it was decided to
visualize the inferred mean values for the latent cognitive variablesmotivation, prior knowledge,
cognitive load, and free working memory capacity, which is the inverse of cognitive load. This
was done separately for mission one and mission two. An example of this visualization can be
seen in figure 6.1. After seeing their inference visualization, the users were asked to rate the
results on a 5-point Likert scale with 1 being "very accurate" and 5 being "very inaccurate". To
ensure that users did not rate the results as very accurate only to support my user study and
my thesis, it was decided to split the users into two groups: The experimental group would
see their real inference data visualization. The second group was designed as a control group.
Users in the control group would see the visualization of randomly sampled values. To make
sure the values were somewhat plausible, they were sampled from a Normal distribution with
a mean value of 0.5. Additionally, it was made sure that the random sample values did not
coincidentally match the actual inference values. If the difference between them was less than
0.1, a new sample was drawn from the distribution.
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Preceding the user study’s execution, two hypotheses were postulated:

Hypothesis (1): The inferred values of the CogIUMmodel and values from the users’ self-
assessment for the latent cognitive variables cognitive load, motivation,
and prior knowledge correlate.

Hypothesis (2): Users from the experimental group rate their inference results as more
accurate than users from the control group.

0 20 40 60 80 100

Free Working
Memory Capacity

Cognitive Load

Prior Knowledge

Motivation

Mission 1:

0 20 40 60 80 100
Extent of Cognitive Attribute

Free Working
Memory Capacity

Cognitive Load

Prior Knowledge

Motivation

62.3%

37.7%

84.9%

78.9%

9.6%

90.4%

48.1%

83.2%

Mission 2:

Figure 6.1: Visualization of the CogIUM inference. Users received such a bar chart after com-
pleting the user study and had to rate its accuracy on a 5-point Likert scale.
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6.2 Planning and Setup

When planning the user study’s execution, it quickly became apparent that it had to be carried
out as a guided study for several reasons: The user study design required the user to switch
between one tab with the questionnaire and another tab with SLE multiple times. Furthermore,
the game proved to be very counterintuitive in initial trial runs, leading to confusion of the
user. It was decided that it could prove helpful to have recordings of the users while they
participate, to identify problems in the user study.
Since the expected duration of each study run was around 30 minutes, it was evident that

only a very limited amount of users could realistically participate in the study. Because the
users were split in two, the goal was postulated to reach 𝑛 = 20 participants. This would mean
that each group consists of at least 𝑛

2 = 10 users.
The recruitment of users mainly consisted of asking my friends and family to participate.

Users were aged 13 to 52 and came from various academic and non-academic backgrounds.
Before the start of the user study, the questionnaire had to be set up, and SLE had to be built

as a Web-GL build and deployed on a server.
For the questionnaire, the survey tool LimeSurvey was chosen. It allows for easy creation of

questionnaires, managing participants, and exporting the answers. The NASA TLX and the
other custom questions described in section 6.1 could easily be implemented.
The preparation of SLE for the user study proved more challenging than expected. There

were two main problems that needed to be solved before the user study could start.
Firstly, an xAPI tracker had to be built into SLE so that every click by the user would trigger

the transmission of an xAPI statement to an LRS. This required extensive studying of the
existing game’s code to figure out where which button click is handled and to send out an
according statement. Since in Unity, buttons can be assigned methods of several scripts via
the GUI, this can be quite time-consuming and confusing. Additionally, this led to two errors
that were hard to localize and solve: When playing the game in the preview tab of the Unity
editor, everything worked fine and xAPI statements were sent to the LRS correctly. However,
when the game was built as a Web-GL build and run in the browser, the game worked fine, but
no statements were sent to the LRS. After extensive trial and error, it was concluded that the
outgoing statements had to be blocked by Unity internally. The Unity manual says that "Due
to security implications, JavaScript code does not have direct access to IP Sockets to implement
network connectivity. As a result, the .NET networking classes [...] are non-functional in
Web-GL" [Unity 2020]. When dealing with xAPI statements, the standard practice is to use the
TinCan library for functionality like starting authenticated communication with an LRS to
send xAPI statements. However, since the TinCan library internally uses HTTP Post requests
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to send the statements, those requests were blocked internally by the Unity Web-GL build.
After figuring this out, the logical next step was to try and use the TinCan library to construct
and return the proper HTTP requests. From this, another problem arose: TinCan internally
utilizes another library called NewtonSoft in its method to construct an HTTP request. This
library is not compatible with Web-GL and led to a runtime error when playing the Web-GL
build in a browser. As a workaround, the HTTP requests had to be manually constructed
to match the requests that the TinCan library would have sent, to then send them using the
UnityWebRequest class. This process was very time-consuming.
The second aspect of the game that had to be adapted was the game’s functionality. In the

first mission, an in-game assistant called LISA provided a click-by-click walk-through of the
mission. Thus, there was no challenge for the user. This assistant had to be disabled for some
situations to create a more challenging task. Additionally, the GUI included several buttons
without functionality that were removed to avoid confusion.

In conclusion, adapting the game SLE for the user study turned out to be far more challenging
and time-consuming than expected.

6.3 Execution

Once the planning and setup process was complete, the user study’s execution could finally
begin.
The procedure for a study run was as follows: At a previously appointed time, the user

received an invitation e-mail. This e-mail contained a link to a video call and a link to the
survey. Once they entered the video call, they were instructed on how to proceed. The video
calls during the study run were recorded. The recordings show SLE with the mouse cursor
movement of the user and a video feed of the user’s webcam as shown in figure 6.2. At the
start of the recording, the user was informed about the recording and its usage and was asked
for his consent. Subsequently, he received a brief introduction to the user study’s topic and
the thesis in general. Next, the user was asked to start the game and play the first mission.
Once he completed the mission, he was instructed to fill out the self-assessment questionnaire
concerning mission one. After completing the questionnaire, the user was asked to play mission
two and then fill out the same questionnaire again, this time with regard to mission two. This
concluded the guided part of the study run. About 30 minutes after the study run, the user
received an e-mail that included the visualization of his inference results. He was asked to
rate the results on a 5-point Likert scale from 1 to 5, 1 being "very accurate" and 5 being "very
inaccurate".
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(a) (b)

Figure 6.2: Screenshots from the user study.

A study run’s average duration was around 25 minutes. Overall, conducting the user
study online and guided through a simultaneous video call proved very successful. Technical
difficulties could be resolved via the video call, and the users could be supported when they
were confused by the game or the self-assessment survey. Additionally, it was interesting to
see and hear users interact with SLE: One common pattern was that most users struggled with
the last subtask, the hidden object challenge. In particular, a majority of users found 3 out of 4
objects relatively fast and then struggled to find the fourth object, a yellow wooden horse. The
hidden object challenge and the horse are displayed in the appendix in figure 1.

6.4 Results and Discussion

After the user study’s execution finished, the collected data was analyzed with regard to the two
hypotheses postulated prior to the execution (see section 6.1). In this section, both hypotheses
are evaluated, and possible explanations for the findings are discussed.
To reiterate, the first hypothesis was that CogIUM’s inferred values for its latent cognitive

variables and the corresponding self-assessments by the users correlate. Thus, the hypothesis
has to be evaluated distinctly for the three cognitive variables that CogIUM tries to predict:
Cognitive load, motivation, and prior knowledge.

The range of values for cognitive load is displayed in figure 6.3. For missions one and two, the
range of users’ self-assessments (orange box) and the range of CogIUM’s inferences (blue box)
are visualized by separate boxes. In the first mission, CogIUM’s cognitive load inferences, on
average, are higher than the users’ self-assessments. However, there is still a weak to moderate
correlation between inferences and self-assessments: The Pearson correlation coefficient,
also referred to as Pearson’s r-value, is 0.382. However, the correlation is not characterized
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as significant because Pearson’s p-value is above the commonly used significance level of
𝛼 = 0.05. Pearson’s p-value describes the probability that assuming the hypothesis is not true
(meaning the null hypothesis is true), the observed data or even more strongly correlated
data could have been produced on coincidence. In our scenario, this can be described as the
following probability: Assuming there is no relation between CogIUM’s inferences and the
users’ self-assessments, what is the probability to still observe data with a correlation coefficient
of 0.382 or higher. Therefore, the p-value is a valuable metric for assessing a correlation’s
meaningfulness.
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Figure 6.3: Self-Assessment and CogIUM inference for cognitive load in mission one and
mission two. Pearson correlation coefficient is 0.382 for mission one and 0.516 for
mission two.

For the second mission, the values of CogIUM’s cognitive load inferences and the users’
self-assessments lie roughly in the same range. The Pearson correlation coefficient is 0.516,
and the p-value is below 𝛼 = 0.05. Accordingly, the correlation is characterized as a significant
moderate to strong correlation.

Those results are very promising and confirm CogIUM’s capability to infer a user’s cognitive
load solely from his click data. One possible explanation for the weaker correlation in mission
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one is a cold-start problem: Users do not know what to expect and are unfamiliar with the
game’s interface. During mission one, several participants reported being rather irritated by
the game’s counterintuitive interface than being cognitively challenged. CogIUM might have
falsely classified this irritation as cognitive load, causing the inference values to lay in a higher
range than the users’ self-assessments. The stronger correlation and similar data range in
mission two support this theory.

Mission 1 Mission 21.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(C
og

IU
M

 in
fe

re
nc

e)
 - 

(s
el

f-a
ss

es
sm

en
t) Difference CogIUM inference and self-assessment:

Cognitive Load

Figure 6.4: Differences between prediction and self-assessment for cognitive load. Values
greater than 0 mean the prediction was higher than the self-assessment, values less
than 0 mean the opposite.

While figure 6.3 only shows the range of the inference and self-assessment data, figure 6.4
visualizes CogIUM’s predictive performance for cognitive load in mission one and two. For
each user, his self-assessed value is subtracted from CogIUM’s inferences. Those differences
are summarized for each mission in the boxplot. The dotted green line at level 0 marks the
sweet spot: If the difference between inference and self-assessment is 0, they are equal. Values
greater than 0 mean the inference is higher than the self-assessment; values less than 0 mean
the inference is lower than the self-assessment. Figure 6.4 clearly showcases the improved
prediction accuracy in mission two compared to mission one: Values are much closer to 0, and
the standard deviation is much smaller. A side-by-side comparison of the individual inference
and self-assessment values for each user is displayed in figure 6.5 for mission one and in
figure 6.6 for mission two.

To evaluate hypothesis (1) with regards to the other two inferred cognitive variables motiva-
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Figure 6.5: Self-Assessment and CogIUM Inference for cognitive load in mission one. Pearson
correlation coefficient is 0.382.
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Figure 6.6: Self-Assessment and CogIUM Inference for cognitive load in mission two. Pearson
correlation coefficient is 0.516.



66 6 Evaluation - User Study

tion and prior knowledge, I will follow the same approach as for cognitive load.
When analyzing the data for motivation, it is evident that CogIUM inferred almost the same

level of motivation for every user (see figure 6.7): All inference values lie between 0.75 and
0.8. Accordingly, the boxes for CogIUM’s inference values are so narrow that they are barely
visible. While most users’ self-assessments for motivation also lie in a small range, there is still
significantly more variation than in the inference values: The mean 50% of self-assessments lie
between 0.7 and 0.8. However, some users rated their motivation as low as 0.2.
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Figure 6.7: Self-Assessment and CogIUM inference for motivation in mission one and mission
two. Pearson correlation coefficient is 0.132 for mission one and −0.143 for mission
two.

Similar to the evaluation for cognitive load, figure 6.8 displays CogIUM’s posterior predictive
performance for motivation. Because the data ranges for inferences and self-assessments are
both small and centered around similar values, the prediction error is relatively low: For both
missions, the differences between inference and self-assessment are centered around 0, and
the lower and upper quartiles are also close to 0. However, this result must be interpreted
carefully: The model predicted almost the same motivation for all users, thus not taking into
account individual differences. Because the value that was predicted for all users is similar to



6.4 Results and Discussion 67

the mean value of self-assessments, the difference between inference and self-assessment is
relatively small. Looking at the correlation coefficients for both missions, it becomes evident
that the model’s inferences do not correspond to individual differences in perceived motivation:
Pearson’s r-value is 0.132 for mission one and −0.143 for mission two.
Therefore, it has to be concluded that CogIUM’s prediction of a user’s motivation is not

working. The very low variance in prediction for motivation implies that the model’s structure
is inadequate. Motivation is modeled by the variable𝑚𝑝𝑐 in CogIUM. Its prior distribution is a
beta distribution with a mean value of 0.75. Since the predicted values are all very close to
the prior distribution’s mean value, the prior distribution might have been too informative to
allow greater variation in the predictions. Going forward, it has to be investigated in additional
experiments why exactly the inferences for motivation are all so close together. Once the cause
is located, the variable𝑚𝑝𝑐 needs to be remodeled accordingly.
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Figure 6.8: Differences between prediction and self-assessment for motivation. Values greater
than 0 mean the prediction was higher than the self-assessment, values less than 0
mean the opposite.

Next, CogIUM’s inference of a user’s prior knowledge is evaluated similarly to the previous
two cognitive variables. Looking at the data for inferences and users’ self-assessments, it is
apparent that CogIUM’s inferences are in a much higher range than the users’ self-assessments
for both missions: A majority of the users’ self-assessments for prior knowledge are in a low
range around 0.25. In contrast to that, the model predicted much higher values in a range of
around 0.75 for both missions.
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Figure 6.9: Self-Assessment and CogIUM inference for prior knowledge in mission one and
mission two. Pearson correlation coefficient is 0.324 for mission one and 0.151 for
mission two.

The difference between inference and self-assessment is showcased by figure 6.10: The
values for both missions are largely above the dotted green line, indicating that the inference is
much higher than the self-assessment for a majority of users. A potential explanation for this
discrepancy is the varying interpretation of the term prior knowledge: During the study, several
participants reported being unsure of the exact meaning of prior knowledge in the user study’s
context. Most users rated their prior knowledge low because they had no initial knowledge of
the game Streamlined Lost Earth. However, what was meant by the question was the prior
knowledge regarding the image exploitation tasks. Additionally, 3 out of 4 image interpretation
tasks could be solved without special technical knowledge. Instead, general knowledge of
images and aerial imagery was required, which most users considered self-evident. Therefore,
it has to be concluded that due to the previously described flaws in the study design, the
evaluation results for prior knowledge are not meaningful.

Hypothesis (2) states that users will rate CogIUM’s inferences on them as more accurate than
they will rate randomly generated Placebo-values. To investigate this hypothesis, users were
split into two groups: Users from the experimental group were shown a visualization of their
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Figure 6.10: Differences between prediction and self-assessment for prior knowledge. Values
greater than 0 mean the prediction was higher than the self-assessment, values
less than 0 mean the opposite.

actual inference results. Users from the control group saw randomly generated Placebo-values.
For both groups, the visualization was sent to the users via e-mail once CogIUM’s calculation
finished. The visualization plot contained four bars corresponding to four cognitive variables:
Motivation, prior knowledge, cognitive load and free working memory capacity. Users were asked
to rate the values’ accuracy on a 5-point Likert scale. The scale ranged from 1: very accurate to
5: very inaccurate.

Experimental
Group

Control
Group

very accurate

accurate

neutral

inaccurate

very inaccurate

User Accuracy Ratings

Figure 6.11: Users’ ratings of the inferences’ accuracy for experimental group and control group.
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Figure 6.11 visualizes a summary of the users’ ratings from the experimental group and the
control group. Both groups’ answers are distributed in a similar range. The median rating from
the experimental group’s users is neutral, the median rating from the control group is inaccurate.
On average, the experimental group’s users did rate their results as more accurate than users
from the control group: On the scale from 1 to 5, the average answer for the experimental
group is 2.82, the average answer for the control group is 3.36. However, the difference is
not significant enough to conclude a causality behind the slightly lower mean value for the
experimental group.

Hypothesis Result

CogIUM’s inferences and user’s self-assessments are correlated...
...for variable cognitive load. confirmed
...for variable motivation. refuted
...for variable prior knowledge. unclear

Users from the experimental group rate their inference results
as more accurate than users from the control group. refuted

Table 6.1: The user study’s hypotheses and their results.

To summarize, the results confirmed hypothesis (1) for the latent variable cognitive load. For
motivation, hypothesis (1) was refuted since there was no correlation, and the model predicted
almost the same motivation level for all users. Regarding prior knowledge, no clear conclusions
could be drawn. Users’ self-assessments were in a much lower range than CogIUM’s inferences,
but there was still a low to moderate correlation. Several users reported feeling unsure about
the exact definition of prior knowledge in the user study’s context. Hence, hypothesis (1)
could neither be confirmed nor refuted for prior knowledge due to imprecise question design.
Similarly, the evaluation of hypothesis (2) also yielded ambiguous results: While users from
the experimental group, on average, did rate their results as more accurate than users from the
control group, the difference in ratings was very small. Therefore, hypothesis (2) was refuted.
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6.5 Posterior Predictive Check

During CogIUM’s iterative development process, posterior predictive checkswere used to assess
the model’s capability to reproduce the input data’s key features. However, only synthetical
input data was available at the time of development to perform posterior predictive checks.
Subsequent to the user study, the check can now be performed with real-world user interaction
data. By evaluating the hypotheses in section 6.4, it was analyzed if CogIUM’s latent variables
actually correspond to users’ cognitive attributes. In addition to that, posterior predictive
checks also play an essential role in the model’s quality assessment: If the model was unable to
reproduce the observable variables’ main features, this could be an additional explanation for
false inference about the users’ cognitive attributes. The theory behind posterior predictive
checks is explained in section 3.2.

In the initial analysis of this thesis, CogIUM revealed structural flaws that caused an inade-
quate reproduction of observable variable mission time 𝑡𝑝𝑐 . After the extensive remodeling
process described in section 5.2, CogIUM was able to reproduce the main aspects of mission
time 𝑡𝑝𝑐 ’s distribution. Figure 6.12 visualizes the posterior predictive mean’s distribution (blue
dotted line) alongside the observed values (black line) for mission time 𝑡𝑝𝑐 in mission one.
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Figure 6.12: Posterior predictive check for mission time 𝑡𝑝𝑐 in mission one of the user study
dataset. Observations are displayed as a kernel density estimate over the 𝑛 = 22
participants.
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As showcased by figure 6.12, CogIUM’s posterior predictive function is very close to the
observations for mission time 𝑡𝑝𝑐 in mission one of the user study dataset. Thus, the model
is able to reproduce the observed data satisfactorily. For mission two, both the posterior
predictive function and the observed data’s distribution are very similar to mission one.

With regards to mission score 𝑠𝑝𝑐 , the posterior predictive function and the observations are
displayed in figure 6.13. Strikingly, all observed scores lie in a high range, and 1.0 is the most
common score. This can be attributed to low task difficulty and the multiple-choice question
style within SLE. Despite the uneven distribution of scores, the model is able to reproduce the
observed data for mission scores 𝑠𝑝𝑐 very well: All spikes in the observed data (black line) are
also represented in the posterior predictive mean distribution (dotted blue line).
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Figure 6.13: Posterior predictive check for mission score 𝑠𝑝𝑐 in mission one of the user study
dataset. Observations are displayed as a kernel density estimate over the 𝑛 = 22
participants.

Concerning the newly added observable variable required attempts 𝑎𝑝𝑐 , the model’s posterior
predictive mean function diverts more from the observations than for the previously analyzed
observable variables. This is illustrated by figure 6.14: The posterior predictive mean values are
not distributed equally or at least very closely to the observed values. Instead, more predicted
mean values than observed values lie around 0.5, causing the spike of the dotted blue line.
However, the observed data’s key features are still represented by the posterior predictive
mean distribution, albeit slightly shifted.
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Figure 6.14: Posterior predictive check for required attempts 𝑎𝑝𝑐 in mission one of the user
study dataset. Observations are displayed as a kernel density estimate over the
𝑛 = 22 participants.

For the other newly introduced variable detours 𝑑𝑝𝑐 , CogIUM’s posterior predictive perfor-
mance is similar to the performance for required attempts 𝑎𝑝𝑐 : While there are some deviations
of the posterior predictive mean distribution from the observed data, the observed data’s key
features are still reproduced. To avoid redundancy, the posterior predictive plots for detours
𝑑𝑝𝑐 in missions one and two are omitted in this section. They can be found in figures 6 and 7
in the appendix.

To summarize, the CogIUMmodel is able to reproduce the key features for all five observable
variables. Especially accurate posterior predictive mean distributions were found for mission
time 𝑡𝑝𝑐 andmission score 𝑠𝑝𝑐 . Therefore, it is concluded that the model’s mathematical structure
is adequate in the sense that it enables a reasonably good fitting of the observed data.
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7 Conclusion and Outlook

The thesis’s main goal was to investigate how CogIUM can be applied to an existing serious
game to enable adaptivity. CogIUM’s applicability was showcased by enhancing, expanding,
and finally applying CogIUM to the serious game Streamlined Lost Earth (SLE). Subsequently,
the model was evaluated in a user study in which users played SLE missions and filled out
self-assessments regarding their cognitive attributes. By comparing CogIUM’s inferences to
users’ self-assessments, it was investigated if CogIUM’s latent variables actually correspond to
users’ cognitive attributes.
Based on the findings, it can be concluded that CogIUM proved the potential to infer a

user’s cognitive load only from his interaction data: There is a significant moderate correlation
between CogIUM’s inferences and users’ self-assessments of total cognitive load in the user
study. Additionally, users rated visualizations of CogIUM’s inference on them as more accurate
than they rated visualizations of Placebo values, albeit only slightly. For the other two predicted
variables motivation and prior knowledge, the results showed no significant correlation. For
motivation, CogIUM inferred almost the same value for all users and was thus unable to predict
individual differences. The lack of correlation for the variable prior knowledge can be attributed
to flaws in the user study’s questionnaire design.

During this thesis’s development, the whole processing chain from the input of user interac-
tion data to the output of adaptivity scores was covered. Parsing functionality was implemented
to extract the observable variables from the xAPI statements containing the user interaction
data. By extending the CogIUM model with the two observable variables required attempts and
detours, more information on the user’s interaction is now utilized for CogIUM’s inference.
Therefore, better-informed adaptivity scores can be computed. Furthermore, structural issues
that hampered the model’s ability to fit certain patterns of input data were resolved. Thus,
the model was able to reproduce the key data features from the user study data for all five
observable variables mission success, mission score, mission time, required attempts, and detours.
CogIUM’s sampling process yields posterior distributions for latent cognitive variables.

While the CogIUM’s sampling duration of several minutes limits practical usage, an online
inference approach was implemented that utilizes a precomputed database to return posterior
distributions for very similar input instantly. Furthermore, methods were developed to compute
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the adaptivity response’s components Assistance Level and Skill Level from the posterior
distributions.
In conclusion, a complete processing chain that takes user interaction data as input and

outputs adaptivity scores was implemented. The CogIUM model was enhanced significantly
by introducing two additional observable variables. Thus, CogIUM was applied to the serious
game SLE, fulfilling this thesis’s primary research objective. In the evaluation, CogIUM showed
promising capability to infer a user’s cognitive load solely based on interaction data.

Future Work

The overall objective should be to integrate CogIUM into the complete adaptivity cycle: By
implementing adaptivity manifestations based on CogIUM’s adaptivity scores, it can be inves-
tigated if the enabled adaptivity actually improves learning outcomes.
Prior to that, several aspects should be addressed: It must be investigated why CogIUM

struggled to predict the latent cognitive variables motivation and prior knowledge. For mo-
tivation, further investigation of the model’s structure is required since it failed to predict
individual differences. Possible explanations and suggestions for remodeling were presented
in section 6.4. Regarding prior knowledge, the ambiguous results can be attributed to imprecise
questions in the user study. Therefore, it remains to be investigated if CogIUMa can accurately
predict a user’s prior knowledge level.
Regarding the adaptivity response defined by ELAI, CogIUMa can compute scores for two

of three components: Skill Level and Assistance Level. One obvious starting point for future
work is to research how Performance Score, the adaptivity response’s third component, can be
inferred. Possible approaches could either directly use xAPI statements as input or use the
latent cognitive variables’ posterior distributions computed by CogIUMa. Additionally, the
computed score for Assistance Level requires further evaluation: It is calculated as a weighted
sum of the cognitive variables’ predicted mean values. The weights were chosen to represent
best the self-assessed need for assistance from the user study data. A feasible way to evaluate
the weights’ validity would be by conducting another user study. Due to time restrictions, this
was not possible within this thesis.

To enable real-time processing of adaptivity requests, this thesis introduced the online
inference mode that returns precomputed adaptivity responses for similar input data. Since
CogIUM’s sampling process takes too long for real-time applications, future work should
investigate the online inference’s accuracy and explore further approaches to accelerate the
adaptivity response’s computation.
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Appendix

Figure 1: A screenshot from the user study. The user is playing the hidden object challenge,
the horse is highlighted by the red circle for visualization. Users did not see the circle.
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Figure 2: Self-Assessment and CogIUM Inference for motivation in mission one. Pearson
correlation coefficient is 0.13.
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Figure 3: Self-Assessment and CogIUM Inference for motivation in mission two. Pearson
correlation coefficient is −0.14.
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Figure 4: Self-Assessment and CogIUM Inference for prior knowledge in mission one. Pearson
correlation coefficient is 0.32.
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Figure 5: Self-Assessment and CogIUM Inference for prior knowledge in mission two. Pearson
correlation coefficient is 0.15
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Figure 6: Posterior predictive check for detours 𝑑𝑝𝑐 in mission one of the user study dataset.
Observations are displayed as a kernel density estimate over the 𝑛 = 22 participants.
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Figure 7: Posterior predictive check for detours 𝑑𝑝𝑐 in mission two of the user study dataset.
Observations are displayed as a kernel density estimate over the 𝑛 = 22 participants.
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