
Characterization and Analysis with xAPI based Graphs for Adaptive Interactive

Learning Environments

Alexander STREICHER

Fraunhofer IOSB, Karlsruhe, Germany

alexander.streicher@iosb.fraunhofer.de

Stefan Wolfgang PICKL

Universität der Bundeswehr München, Neubiberg, Germany

stefan.pickl@unibw.de

ABSTRACT

In e-learning, insights from the analysis of usage tracking data

can help improve teaching and learning, e.g., with learning

analytics to identify strengths and weaknesses of learners or

course material, or for targeted help for individual students. One

analysis approach is to examine the graph networks of

interaction usages. Adaptive e-learning systems (ALS), which

personalize the learning experience to the learners' needs, can

make use of relationship information in graph networks to

determine the best adaptation strategy. For example, ALS can

use graph algorithms to detect central activities that have high

influence to the users or to learning objects. This paper shows

how to make use of the Experience API (xAPI) protocol and

graph networks for its application in adaptive interactive

learning environments such as computer simulations and

serious games. A prototype implementation hints at the

feasibility of the concept and its practical implications.

Keywords: graph algorithms, graph mining, e-learning,

learning analytics, adaptivity

1. INTRODUCTION

Characterization and analysis play a central role in building

adaptive e-learning systems (ALS). The characterization

includes a variety of disciplines, ranging from technical

modeling of systems and communication protocols to modeling

of the users cognitive or learning states. This modeling can pose

the basis for, e.g., adaptive systems like Intelligent Tutoring

Systems (ITS) or learning analytics. ALS analyze the observed

interaction usage data to determine the best adaptation strategy.

In contrast to mere adaptability, which means the possibility to

be actually modifiable, the term adaptivity here means, that the

process of model learning and analyzing is done automatically,

e.g., by using artificial intelligence (AI) techniques. Examples

can be cognitive modeling for synthetic reproductions of

cognitive user states [1], machine learning to build

classification models for user learning styles [2], or data mining

techniques like natural language processing to produce

semantically relevant learning material recommendations [3].

In this paper we focus on the characterization and analysis of

the users’ interaction usage data with the utilization of graph

network structures and technical application of graph platforms

like graph databases. This is motivated by the fact that in our

ALS we use the widely applied Experience API (xAPI) protocol

([4], [5]), and xAPI’s actor-verb-object triple structure makes it

suitable to be stored and analyzed in graph platforms. Another

important reason for graphs is the possibility for easy and

understandable visualization, for example as 2D graphs with

nodes and edges. Graphs can communicate relationships, even

complex networks, in an understandable way, for developers

and users alike. Adaptive systems have to make decisions that

are comprehensible to the user. Users can be learners, tutor or

teachers, or developers of ALS. Whilst black-box artificial

intelligence models like artificial neural networks and its further

developments like deep learning can achieve remarkable results,

the underlying models are opaque and alien to the human user.

Explainable A.I. (XAI) systems try to communicate – in a

human understandable way – the data modeling as well as the

data analysis. For ALS this could mean, that the reasons for

adaptation are being made transparent to the user. Graphs and

their comprehensible visualization as 2D networks can provide

a solution approach.

For our adaptivity system for interactive learning environments,

the research question is: how to characterize and analyze usage

interaction data using mathematical graphs?

The contribution of this paper is: we describe how to use the

xAPI data as graph structures, and we highlight graph database

algorithms which are suitable for learning analytics tasks.

We use graph databases to store the incoming user interaction

data, and to make use of graph algorithms for learning analytics

tasks. From a mathematical perspective, graph theory offers

many well-studied concepts and algorithms, and their

application is seen in a variety of fields, one major field of

application being social networks and the Social Network

Analysis (SNA) [6], [7].

Looking at the state of research, SNA has some applications in

e-learning [7], but the application of graph-based SNA

approaches for interactive learning environments seems to be

very limited. So far, we did not find any relevant literature that

is similar to our approach. Regarding gamification, some work

can be found which deals with gamified e-learning courses and

SNA, as the systematic literature review by Cela et al. shows

[8]. Regarding xAPI and its wide applications [5], there are not

yet that many applications for computer simulations and serious

games. Our work targets that combination of applying graph

platforms (i.e., graph databases and graph analysis toolsets) to

user interaction tracking data originating from xAPI trackers.

The paper continues with an explanation of the embedding

target application scenario of adaptive computer simulations

and serious games, in the following more broadly subsumed by

the term Adaptive Interactive Learning Environments (AILE).

Next follows the description how we transform xAPI to graph

structures, following conceptual considerations which graph

algorithms work for such kind of graphs. We also describe the

technical approach how to implement a xAPI graph-based data

processing pipeline and how to design its general software

architecture.

2. ADAPTIVE INTERACTIVE LEARNING

ENVIRONMENTS (AILE)

A special e-learning type is digital game based learning

(DGBL) [9] with its specialized form of educational serious

games. Such software systems enable learners to experience

learning and training because of high intrinsic motivation in a

playful way – they want to play, and by playing, they learn.

Intrinsic motivation can sustainably optimize learning outcomes

[10], and one approach to increase user motivation is to utilize

the principles from DGBL [11]. In general, serious games are

games with a characterizing goal [12], in the case of educational

serious games being the goal to teach and learn. However, the

term serious game does not capture the vast variety of virtual

learning environments, ranging from real-world (non-digital)

games or learning environments (like classrooms) to computer

simulations which also contain game-like playing

characteristics. One possible subsuming term is Interactive

Learning Environments (ILE), which we will use in the

following for computer simulations or serious games for

education and training. Further learning optimization can be

achieved through personalized learning in which adaptive e-

learning systems (ALS) modify the software or content to

match the individual needs of the user [13]. ALS have their

reference in Intelligent Tutoring Systems (ITS) [14] and exploit

techniques from artificial intelligence to dynamically adapt the

systems to the users’ context. Adaptive Interactive Learning

Environments (AILE) therefore embody the principles of ALS

to dynamically adapt the interactive learning technologies to the

actual needs of the users while considering DGBL principles.

This can include strategies to mimic human-like behavior in

virtual agents which help or guide the users, or to promote trial-

and-error approaches, or to simply not to disturb the users’

game flow.

The goal of adaptive knowledge transfer is to promote

knowledge acquisition through individual or personalized

knowledge management. Our work is focused on virtual e-

learning worlds, i.e. computer simulations and digital learning

games, so-called serious games [12]. The core thesis is that

through adaptivity to the learning progress the learning success

can be optimized - analogous to the personal supervision by a

human tutor [13]. The concrete goal is to adapt the systems

dynamically and iteratively to the individual learning progress

of the users. Depending on the level of knowledge and abilities

of the learner, the AILE are dynamically modified, different

learning materials are offered or situationally adapted assistance

is provided, e.g., context-relevant learning material

recommendations.

In the following and for process structuring of our adaptivity

system we follow an extended 4-phased adaptivity cycle. It

basically extends the model from Shute and Zapata-Rivera [15]

by combining the analysis phase and the learner models (from

the current user and also from other users), cf. Figure 1. In this

4-phased adaptivity cycle, there are the phases (1) capture, (2)

analysis and user (learner) modeling, (3) select and (4) present.

From a system theoretic point of view, this follows the

principles of adaptive control systems with closed feedback

control loops [16]. To define the closed loop performance, we

need a reference model as basis for deviation estimation, i.e., a

model to characterize the users’ playing behavior. One approach

in adaptive control is Model Reference Adaptive Controller

(MRAC) [16]. The graph structures or models work as a basis

for such kind of reference models. This concerns the

characterization part of this paper: the graph structures encode

information on the user interactions, information on the

observed systems (games, ILE, etc.) and on the actions of

individual users. This is, the graphs’ relationships carry

information how an ILE is built and how it is used, e.g., which

sequence of interaction elements are triggered by whom. Tutors

can use this information in learning analytics dashboards to

estimate learners’ performance or how to improve the courses.

Similarly, AILE can use this information to estimate the

learners’ performance to select suitable adaptation strategies. In

this case the graphs together with a previously defined Ideal

Path Model [17] could act as reference models for MRAC.

Figure 1: Extended 4-phased adaptivity cycle (based on [15])

with combined analysis-learner-models-phase.

3. GRAPHS & E-LEARNING

Due to the triple nature of xAPI statements (actor, verb, object),

these statements can be translated and analyzed very well in

graph structures. The observed interaction data with multiple

different actors and activities is highly connected, which makes

the use of graph platforms relevant. This can also be seen in

social networks where similar data triples are used to describe

the actions of users. Our approach to use the xAPI’s triple

structure and graphs is well related to the much bigger domain

of social networks and its accompanied discipline of Social

Network Analysis (SNA). In social networks the W3C Activity

Streams [18] standard is used to store the users’ actions in an

interoperable way. The Web frontend typically displays the

activity streams as a history, e.g., “Aaron likes John’s picture”.

SNA is used to analyze the highly connected data, for example

to search for cliques and neighborhoods, expert finding [19],

[20], or to look for so-called "influencers". The possibilities of

SNA have also been recognized for e-learning where one is

interested in relationships between learners, or between learners

and the offered (learning) objects or activities [7].

At first, the xAPI data streams must be stored, and its graph

nature with nodes and relationships motivates the use of graph

databases [21]. A graph platform which supports both

transactional storage and data processing is Neo4j [22]. It

supports transactional processing and analytical processing of

graph data, i.e., it is a graph database with included graph

analytics facilities like commonly used graph algorithms. In

contrast to typical relational databases, graph databases belong

to the NoSQL databases where the data is not required to adhere

to predefined schema [21]. Since we make use of the JSON-

formatted xAPI statements, the use of NoSQL databases is

apparent. While JSON xAPI statements are typically stored in

xAPI Learning Record Stores (LRS), which typically use

NoSQL document-oriented databases, these databases however

do not provide graph models that promote relationships, nor the

possibility to run graph algorithms for analytics purposes.

The underlying theory for graph databases and its graph models

is graph theory. Graph theory is the study of mathematical

graph structures. A graph is a structure in which the set of

objects form pairs having similarity among them. These objects

are called vertices or nodes, connected to other vertices by

edges. There are two types of graphs: directed and undirected

graphs. Directed graphs are asymmetrical since the relationship

between the nodes is unidirectional in nature. Undirected

graphs, in contrast, are symmetrical because the connecting

edges between the vertices represent the reciprocated

relationship. In the context of this work, we deal with acyclic

directed graphs.

As an example how to apply graph theory to serious games, we

look at our field of application, aerial image interpretation, and

at a serious game for professional image interpreter training

[23]. In such a game the users learn how to systematically plan

and task the correct imagery sensor, and how to correctly

interpret images towards a standardized report. In the game, the

users interact with a virtual weather report console in order to

then carry out sensor deployment planning depending on the

current or predicted weather conditions. Obviously, the user

should not task an optical sensor for clouded weather conditions

when only clouds are to be seen; instead, a radar image sensor

should be used. One learning objective in the game is to first

look at the weather forecast to employ to correct sensor

deployment strategy.

Using graph analysis and machine learning, models of

interaction patterns can be learned, e.g. which activities follow

each other. In the example, the first step is to first view the

weather console, then perform sensor scheduling; see "next"

connections in Figure 2. Further, the graph shows which

users/actors did not follow typical interaction sequences. In the

example, actor A3 did not view the weather report first before

scheduling a sensor, which can be problematic and not

congruent with the learning objective.

A1 A2 A3

Weather
Console

Sensor
Tasking

Sensor
Deployment

o
p
en

execu
te

next

Figure 2: Example of a simple graph structure from observed

user interaction data. Three actors (circles A1-A3) use

different objects (green rectangles) with different interaction

verbs (connections "open", "plan", "execute").

Relationships can also be learned automatically (grey

dashed connections, "next").

Next, we consider another serious game example and observed

xAPI activity streams. For the image exploitation game

“Exercise Trainer” (EXTRA), where the player must produce

imagery products, we attached an xAPI adapter on various

game actions (activities). Without loss of generality, this

approach can also be applied in similar ways to other games,

computer simulations or assistance systems in general (xAPI

libraries are available for common programming languages).

Figure 3: Serious game “Exercise Trainer” (EXTRA), first level

with just a factory, a connection and a market.

In our example game session the user “John Doe” starts the

EXTRA game, adds a single connection between an image

production “factory” and a distribution point (“market”); he

makes multiple sells of generated “raw image” products, and

finally completes the level. The observed xAPI statements are

(not displaying repeated statements):

<John Doe, initialized, EXTRA Game>
<John Doe, added, Connection>
<John Doe, built, raw_image>
...
<John Doe, sold, raw_image>
...
<John Doe, completed, EXTRA Level>

Important to note is that in the xAPI statements the user is

always the active executing entity (actor). This follows the

xAPI specification [4], i.e., not the factories (building raw

image products) are the active entities (actors) but always the

user/player.

The statements are converted to nodes and relationships,

inserted into the graph-database Neo4j (version 3.5), and

visualized using Neo4j’s browser client using the Cypher query

“MATCH (a:Actor)-[v]-(o:Activity) RETURN a,v,o”.

Figure 4 shows the resulting graph.

Figure 4: Graph visualization of a simple example for 16 xAPI

activity statements with actor node “John Doe” and

differently connected activity nodes (colored green).

Multiple connections for multiple actions, e.g., 9 x “BUILT”

with varying timestamp attributes (not displayed here).

Problematic with such kind of graphs is that they can become

very big and hardly comprehensible, least understandable. As

depicted in our small example the amount of visible

relationships is identical to the number of xAPI statements

because for each action (verb) a new relationship with a

different timestamp attribute is created. For easier and more

understandable visualizations, identical relationships (verbs)

should be drawn as just a single connection type. This reflects

better the basic idea behind graphs to primarily focus on just

nodes and relationships.

Further observations will be added to the graph network. In our

example, a different user “Aaron” also plays the game in a

similar fashion but with a different product “video” and without

completing the level (no observed completed-statement). The

observed xAPI statements are:

<Aaron, initialized, EXTRA Game>
<Aaron, add, Connection>
<Aaron, built, raw_image>
<Aaron, built, video>
<Aaron, sold, video>

Figure 5 displays the resulting graph; existing nodes are reused

and a new nodes for “video” is created. However, in this

visualization identical actions (e.g., “BUILT”) have been joined

into a single dedicated relationship type; the information about

the amount of observed actions is stored as an attribute.

One observation is that such graphs typically follow a power

law distribution where one quantity varies as a power of

another. This is especially true for real-world networks with an

uneven distribution of nodes and relationships [22]. In our case

the number of actor and activity nodes grows less than the

number of relationships; new actor and activity nodes produce

lot’s of new connections, as can be seen in our example. At

some point the number of activity nodes is saturated, because

typically an interactive software has a finite number of

interaction activities – even for adaptive systems with

dynamically modified environments and modified activity sets.

Similarly this is also true for the number of actor nodes.

Figure 5: Graph visualization of additional game session from

user “Aaron”. Existing activity nodes (colored green) are

reused, e.g., “Connection” and “EXTRA Game”. Identical

actions are joined into dedicated relationship types.

An important question is how to model the time dimension. For

e-learning analytics we are interested in questions which

incorporate time. For example, how long did a user work on a

certain task, or how fast is the users’ learning pace. In the above

simple example, we chose to encode time in an attribute field of

a connection. However, another approach could be to have

multiple graphs per timestamp, i.e., time would add another

dimension to the 2D graph. For each observation a new

identical graph of nodes and connections would be created.

However, typical graph platforms and graph visualization tools

are oriented at 2D graph network structures, and time is

typically encoded as attributes to nodes or connections.

4. GRAPH ALGORITHMS & E-LEARNING

This section deals with the algorithmic aspects of the initially

stated research question, i.e., our interest is what graph

algorithms are suitable for the analysis of our xAPI interaction

data graphs. Graph algorithms are used to compute metrics for

graphs, nodes, or relationships. They can provide insights on

relevant entities in the graph (e.g., centralities, ranking), or

inherent structures like communities (e.g., community-

detection, graph-partitioning, clustering). Considering classical

graph algorithm classes, possible learning analytics for the

xAPI based observations questions could be:

- What are central learning objects or interaction

elements, or what are central users? Or inversely

which users or objects are less connected?

- What are typical interaction patterns and how do they

develop over time?

- What are costs, capacities or control points?

- What interactions happen between users?

- What influence do certain users have on other users?

- …

In our type of graphs, we observe mainly actor and activity type

nodes; each user is represented by an actor node, each activity

or object by an activity node (cf. previous section). For

computer simulations and serious games the activities can be

interaction elements like interactive consoles, other player

avatars or those of non-player characters (NPC), etc.

Node type Source

Actor User/learner

Activity Learning object

(ILE) Interaction element

The type of graph algorithms is oriented at our approach’s

implementation strategy to use the graph platform Neo4j [22].

The interesting algorithm classes for the described field of

application are (not exhaustive):

- Centrality [22]

- Expert Finding [20] [19]

- Community Detection

- Social Influence Detection [6] [24]

- Pattern Detection [25]

Centrality

Centrality is one of the most important algorithm used in SNA

in general [22], and also for e-learning motivated SNA [7].

Centrality helps to find the most important nodes by evaluating

the roles and impact of the node in the network, and to

understand the group dynamics such as credibility, accessibility,

outreach and links or connections [22].

Degree Centrality: measures the number of relationships of a

node. Examples:

- Which actor is interacting with many activities? What

is the in-degree or out-degree of central actor nodes?

- Which activities are used frequently, or vice versa,

which are unused and possibly obsolete?

Closeness Centrality: measures which nodes have the shortest

path to all other nodes. According to Needham and Hodler [22]

Closeness Centrality should be used when interested in

information spreading, i.e., to find nodes which disseminate

things the fastest. Example: which learning activities typically

happen together?

Betweenness Centrality: measures the control flow between

nodes and groups. Examples:

- Which activity has the most influence on the flow

between actors and activities of the neighborhood

group?

- Which activities must not be missed, because they are

part of important sequences (sub-graphs)?

PageRank: measures a node’s influence by summing up scores

of the node’s neighbors, and their neighbors. Examples:

- What are influencing activities and what is their

ranking?

- Which actors play an important role in the network,

which actors can be seen as experts?

Community Detection

Most networks form groups or sub-graphs which can be

identified as patterns. Member nodes of such sub-graph have

more relationships within the group than with nodes outside

their group [22]. Important community detection algorithms are

triangle count, clustering coefficient, connected components, or

label propagation.

Triangle Count: measure how many nodes form triangles.

Example: which activities typically appear together, which form

a group?

5. APPLICATION EXAMPLE

Our prototype implementation follows the described approach:

a serious game is attached with an xAPI adapter which sends

selected activities to an xAPI compliant endpoint (cf. Figure 6).

Typically, this endpoint is a standard xAPI database, a Learning

Record Store (LRS), which client systems can periodically

query for new data. However, this would not allow for instant,

live or online analysis. We propose to use the wiretap enterprise

integration pattern which, placed between the sending xAPI

adapter and the receiving LRS. The wiretap can be implemented

as a Java servlet proxy in our “E-Learning A.I.” (ELAI)

architecture which targets adaptivity for ILE [26]. The proxy

approach allows to react to new usage data without a time offset

which. In our ELAI architecture the xAPI JSON data is

converted to nodes and relations, and then stored into the graph

database (cf. Figure 6). The adaptive learning system (ALS)

gets the output of the above described graph algorithms, e.g.,

selection of the closest nodes (closeness centrality) or most

influencing node (betweenness centrality) for the currently

observed user. The adaptivity system sends the interpreted data

to a controller component which adapts the interactive

environment [26]. This data could be scalar values which carry

information on the users’ performance, skill level or helping

level, or recommendations in form of modified content, text,

hyperlinks, etc. [26] For learning analytics purposes the

reporting output of the LRS, of the graph platform and the ALS

is made available with a Web-based dashboard (example in

Figure 7).

Figure 6: Data processing architecture.

Figure 7: Example for a graph visualization in a learning

analytics dashboard, segment for a selected user.

6. CONCLUSION

Adaptive interactive learning environments (AILE) need

dynamic and flexible data structures for user or learner

modeling, and to model the interactive learning environments

(ILE). Graph structures can provide a basis for this modeling. In

this paper we describe how to make use of graph databases and

their algorithms for the characterization and analysis of ILE. In

respect to standard input-processing-output, we use the e-

learning standard xAPI as input; it is converted to graph

structures which a graph platform like Neo4j can process; the

output from graph algorithms, like degree centrality or expert

finding, can be visualized for the user (e.g., in a learning

analytics dashboard), or it can be used in the adaptivity logic of

AILE to determine the next best adaptation strategy, e.g.,

recommendation of the closest connected and highest ranked

activity node. On basis of our xAPI based graph structures the

paper presents a selection of graph algorithms and their possible

application examples in the e-learning analysis context.

7. DISCUSSION

The graph algorithm selection is preliminary and further

research studies must show how the algorithms react to real

data. Also, further research should study the influence of

different game genres on the resulting graph structures, e.g.,

what graph similarities (patterns) exist between different genres

and how do they differ. This is important for automatic analysis

of games, because such graphs could act as classification

features to automatically determine the type (genre) of a game

or as a basis for a metric for retrieval tasks.

The paper currently just describes a syntactic approach, i.e.,

how to transform incoming data into graph structures. There is

no semantic information. A semantic level should be

considered, what – in a semantic sense – did the users do? How

is the mapping to learning objectives, and how to determine if a

user has achieved the learning objectives? Subgraph and pattern

matching according to an additional reference model graph

could be done here. A study is going to be conducted to

examine what the actual effect of the approach to real e-learning

courses is.

8. ACKNOWLEDGEMENTS

The underlying project to this article is funded by the Federal

Office of Bundeswehr Equipment, Information Technology and

In-Service Support under promotional references. The authors

are responsible for the content of this article.

9. REFERENCES

[1] N. Matsuda, W. W. Cohen, J. Sewall, G. Lacerda, and K.

R. Koedinger, “Evaluating a Simulated Student using

Real Students Data for Training and Testing,”

Proceeding Int. Conf. User Model., vol. 2007, pp. 1–10,

2007, doi: 10.1007/978-3-540-73078-1_14.

[2] E. J. Brown, T. J. Brailsford, T. Fisher, and A. Moore,

“Evaluating Learning Style Personalization in Adaptive

Systems: Quantitative Methods and Approaches,” IEEE

Trans. Learn. Technol., vol. 2, no. 1, pp. 10–22, Jan.

2009, doi: 10.1109/TLT.2009.11.

[3] A. Streicher, N. Dambier, and W. Roller, “Semantic

Search for Context-Aware Learning,” 7th Int. Conf.

Gener. Web Serv. Pract., pp. 346–351, 2011, doi:

10.1109/NWeSP.2011.6088203.

[4] Advanced Distributed Learning (ADL), “Experience API

(xAPI) Specification, Version 1.0.1,” Advanced

Distributed Learning (ADL) Initiative, U.S. Department

of Defense, 2013.

[5] K. C. Lim, “Case Studies of xAPI Applications to E-

Learning,” p. 12, 2015.

[6] D. J. Cook and L. B. Holder, Mining Graph Data. 2006.

[7] K. L. Cela, M. Á. Sicilia, and S. Sánchez, “Social

Network Analysis in E-Learning Environments: A

Preliminary Systematic Review,” Educ. Psychol. Rev.,

vol. 27, no. 1, pp. 219–246, Mar. 2015.

[8] L. de-Marcos et al., “Social network analysis of a

gamified e-learning course: Small-world phenomenon

and network metrics as predictors of academic

performance,” Comput. Hum. Behav., vol. 60, pp. 312–

321, Jul. 2016, doi: 10/f8nsbw.

[9] M. Prensky, “Computer games and learning: Digital-

based games,” in Handbook of Computer Game Studies,

2005, pp. 97–124.

[10] S. Sampayo-Vargas, C. J. Cope, Z. He, and G. J. Byrne,

“The effectiveness of adaptive difficulty adjustments on

students’ motivation and learning in an educational

computer game,” Comput. Educ., vol. 69, pp. 452–462,

Nov. 2013, doi: 10.1016/j.compedu.2013.07.004.

[11] M. Prensky, “Don’t bother me Mom, I’m learning!”:

how computer and video games are preparing your kids

for twenty-first century success and how you can help!

2006.

[12] R. Dörner, S. Göbel, W. Effelsberg, and J. Wiemeyer,

Eds., Serious Games - Foundations, Concepts and

Practice. Cham: Springer International Publishing, 2016.

[13] A. Streicher and J. D. Smeddinck, “Personalized and

Adaptive Serious Games,” in Entertainment Computing

and Serious Games: International GI-Dagstuhl Seminar

15283, Dagstuhl Castle, Germany, July 5-10, 2015,

Revised Selected Papers, R. Dörner et al., Ed. Cham:

Springer International Publishing, 2016, pp. 332–377.

[14] B. P. Woolf, Building Intelligent Interactive Tutors.

Morgan Kaufmann, 2009.

[15] V. Shute and D. Zapata-Rivera, “Adaptive educational

systems,” Adapt. Technol. Train. Educ., vol. 7, no. 1, pp.

1–35, 2012, doi: 10.1017/CBO9781139049580.004.

[16] K. J. Åström and B. Wittenmark, Adaptive control:

second edition. Dover Publications, 2013.

[17] A. Streicher, S. Leidig, and W. Roller, “Eye-Tracking for

User Attention Evaluation in Adaptive Serious Games,”

in 13th European Conference on Technology Enhanced

Learning, EC-TEL 2018, Leeds, UK, 2018, pp. 583–586,

doi: 10.1007/978-3-319-98572-5_50.

[18] J. Snell and E. Prodromou, “Activity Streams 2.0,”

W3C, W3C Recommendation, 2017.

[19] A. Kardan, A. Omidvar, and F. Farahmandnia, “Expert

finding on social network with link analysis approach,”

in 2011 19th Iranian Conference on Electrical

Engineering, 2011, pp. 1–6.

[20] Y. Fu, R. Xiang, Y. Liu, M. Zhang, and S. Ma, “Finding

Experts Using Social Network Analysis,” in

IEEE/WIC/ACM International Conference on Web

Intelligence (WI’07), Fremont, CA, USA, 2007, pp. 77–

80, doi: 10/b4s9q7.

[21] I. Robinson, J. Webber, and E. Eifrem, Graph

Databases. O’Reilly Media, Inc., 2013.

[22] M. Needham and A. E. Hodler, Graph Algorithms:

Practical Examples in Apache Spark and Neo4j.

O’Reilly Media, 2019.

[23] D. Atorf, E. Kannegieser, and W. Roller, “Balancing

Realism and Engagement for a Serious Game in the

Domain of Remote Sensing,” Games and Learning

Alliance, vol. 11385. Springer International Publishing,

Cham, pp. 146–156, 2019, doi: 10.1007/978-3-030-

11548-7_14.

[24] R. Aviv, Z. Erlich, G. Ravid, and A. Geva, “Network

analysis of knowledge construction in asynchronous

learning networks,” Online Learn., vol. 7, no. 3, Mar.

2019, doi: 10/ggf9bp.

[25] T. R. Coffman and S. E. Marcus, “Pattern classification

in social network analysis: a case study,” in 2004 IEEE

Aerospace Conference Proceedings (IEEE Cat.

No.04TH8720), 2004, vol. 5, pp. 3162-3175 Vol.5, doi:

10/bndgn3.

[26] A. Streicher, “Interoperable Adaptivity and Learning

Analytics for Serious Games in Image Interpretation,” in

International Conference on Engineering, Technology

and Innovation (ICE/ITMC), Funchal, Portugal, 2017,

pp. 709–710.

