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ABSTRACT 

In e-learning, insights from the analysis of usage tracking data 

can help improve teaching and learning, e.g., with learning 

analytics to identify strengths and weaknesses of learners or 

course material, or for targeted help for individual students. One 

analysis approach is to examine the graph networks of 

interaction usages. Adaptive e-learning systems (ALS), which 

personalize the learning experience to the learners' needs, can 

make use of relationship information in graph networks to 

determine the best adaptation strategy. For example, ALS can 

use graph algorithms to detect central activities that have high 

influence to the users or to learning objects. This paper shows 

how to make use of the Experience API (xAPI) protocol and 

graph networks for its application in adaptive interactive 

learning environments such as computer simulations and 

serious games. A prototype implementation hints at the 

feasibility of the concept and its practical implications.  
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1. INTRODUCTION 

Characterization and analysis play a central role in building 

adaptive e-learning systems (ALS). The characterization 

includes a variety of disciplines, ranging from technical 

modeling of systems and communication protocols to modeling 

of the users cognitive or learning states. This modeling can pose 

the basis for, e.g., adaptive systems like Intelligent Tutoring 

Systems (ITS) or learning analytics. ALS analyze the observed 

interaction usage data to determine the best adaptation strategy. 

In contrast to mere adaptability, which means the possibility to 

be actually modifiable, the term adaptivity here means, that the 

process of model learning and analyzing is done automatically, 

e.g., by using artificial intelligence (AI) techniques. Examples 

can be cognitive modeling for synthetic reproductions of 

cognitive user states [1], machine learning to build 

classification models for user learning styles [2], or data mining 

techniques like natural language processing to produce 

semantically relevant learning material recommendations [3]. 

In this paper we focus on the characterization and analysis of 

the users’ interaction usage data with the utilization of graph 

network structures and technical application of graph platforms 

like graph databases. This is motivated by the fact that in our 

ALS we use the widely applied Experience API (xAPI) protocol 

([4], [5]), and xAPI’s actor-verb-object triple structure makes it 

suitable to be stored and analyzed in graph platforms. Another 

important reason for graphs is the possibility for easy and 

understandable visualization, for example as 2D graphs with 

nodes and edges. Graphs can communicate relationships, even 

complex networks, in an understandable way, for developers 

and users alike. Adaptive systems have to make decisions that 

are comprehensible to the user. Users can be learners, tutor or 

teachers, or developers of ALS. Whilst black-box artificial 

intelligence models like artificial neural networks and its further 

developments like deep learning can achieve remarkable results, 

the underlying models are opaque and alien to the human user. 

Explainable A.I. (XAI) systems try to communicate – in a 

human understandable way – the data modeling as well as the 

data analysis. For ALS this could mean, that the reasons for 

adaptation are being made transparent to the user. Graphs and 

their comprehensible visualization as 2D networks can provide 

a solution approach. 

For our adaptivity system for interactive learning environments, 

the research question is: how to characterize and analyze usage 

interaction data using mathematical graphs? 

The contribution of this paper is: we describe how to use the 

xAPI data as graph structures, and we highlight graph database 

algorithms which are suitable for learning analytics tasks.  

We use graph databases to store the incoming user interaction 

data, and to make use of graph algorithms for learning analytics 

tasks. From a mathematical perspective, graph theory offers 

many well-studied concepts and algorithms, and their 

application is seen in a variety of fields, one major field of 

application being social networks and the Social Network 

Analysis (SNA) [6], [7].  

Looking at the state of research, SNA has some applications in 

e-learning [7], but the application of graph-based SNA 

approaches for interactive learning environments seems to be 

very limited. So far, we did not find any relevant literature that 

is similar to our approach. Regarding gamification, some work 

can be found which deals with gamified e-learning courses and 

SNA, as the systematic literature review by Cela et al. shows 

[8]. Regarding xAPI and its wide applications [5], there are not 

yet that many applications for computer simulations and serious 

games. Our work targets that combination of applying graph 

platforms (i.e., graph databases and graph analysis toolsets) to 

user interaction tracking data originating from xAPI trackers. 

The paper continues with an explanation of the embedding 

target application scenario of adaptive computer simulations 

and serious games, in the following more broadly subsumed by 

the term Adaptive Interactive Learning Environments (AILE). 

Next follows the description how we transform xAPI to graph 

structures, following conceptual considerations which graph 

algorithms work for such kind of graphs. We also describe the 

technical approach how to implement a xAPI graph-based data 

processing pipeline and how to design its general software 

architecture. 



2. ADAPTIVE INTERACTIVE LEARNING 

ENVIRONMENTS (AILE) 

A special e-learning type is digital game based learning 

(DGBL) [9] with its specialized form of educational serious 

games. Such software systems enable learners to experience 

learning and training because of high intrinsic motivation in a 

playful way – they want to play, and by playing, they learn. 

Intrinsic motivation can sustainably optimize learning outcomes 

[10], and one approach to increase user motivation is to utilize 

the principles from DGBL [11]. In general, serious games are 

games with a characterizing goal [12], in the case of educational 

serious games being the goal to teach and learn. However, the 

term serious game does not capture the vast variety of virtual 

learning environments, ranging from real-world (non-digital) 

games or learning environments (like classrooms) to computer 

simulations which also contain game-like playing 

characteristics. One possible subsuming term is Interactive 

Learning Environments (ILE), which we will use in the 

following for computer simulations or serious games for 

education and training. Further learning optimization can be 

achieved through personalized learning in which adaptive e-

learning systems (ALS) modify the software or content to 

match the individual needs of the user [13]. ALS have their 

reference in Intelligent Tutoring Systems (ITS) [14] and exploit 

techniques from artificial intelligence to dynamically adapt the 

systems to the users’ context. Adaptive Interactive Learning 

Environments (AILE) therefore embody the principles of ALS 

to dynamically adapt the interactive learning technologies to the 

actual needs of the users while considering DGBL principles. 

This can include strategies to mimic human-like behavior in 

virtual agents which help or guide the users, or to promote trial-

and-error approaches, or to simply not to disturb the users’ 

game flow. 

The goal of adaptive knowledge transfer is to promote 

knowledge acquisition through individual or personalized 

knowledge management. Our work is focused on virtual e-

learning worlds, i.e. computer simulations and digital learning 

games, so-called serious games [12]. The core thesis is that 

through adaptivity to the learning progress the learning success 

can be optimized - analogous to the personal supervision by a 

human tutor [13]. The concrete goal is to adapt the systems 

dynamically and iteratively to the individual learning progress 

of the users. Depending on the level of knowledge and abilities 

of the learner, the AILE are dynamically modified, different 

learning materials are offered or situationally adapted assistance 

is provided, e.g., context-relevant learning material 

recommendations.  

In the following and for process structuring of our adaptivity 

system we follow an extended 4-phased adaptivity cycle. It 

basically extends the model from Shute and Zapata-Rivera [15] 

by combining the analysis phase and the learner models (from 

the current user and also from other users), cf. Figure 1. In this 

4-phased adaptivity cycle, there are the phases (1) capture, (2) 

analysis and user (learner) modeling, (3) select and (4) present. 

From a system theoretic point of view, this follows the 

principles of adaptive control systems with closed feedback 

control loops [16]. To define the closed loop performance, we 

need a reference model as basis for deviation estimation, i.e., a 

model to characterize the users’ playing behavior. One approach 

in adaptive control is Model Reference Adaptive Controller 

(MRAC) [16]. The graph structures or models work as a basis 

for such kind of reference models. This concerns the 

characterization part of this paper: the graph structures encode 

information on the user interactions, information on the 

observed systems (games, ILE, etc.) and on the actions of 

individual users. This is, the graphs’ relationships carry 

information how an ILE is built and how it is used, e.g., which 

sequence of interaction elements are triggered by whom. Tutors 

can use this information in learning analytics dashboards to 

estimate learners’ performance or how to improve the courses. 

Similarly, AILE can use this information to estimate the 

learners’ performance to select suitable adaptation strategies. In 

this case the graphs together with a previously defined Ideal 

Path Model [17] could act as reference models for MRAC.  

 
Figure 1: Extended 4-phased adaptivity cycle (based on [15]) 

with combined analysis-learner-models-phase. 

3. GRAPHS & E-LEARNING 

Due to the triple nature of xAPI statements (actor, verb, object), 

these statements can be translated and analyzed very well in 

graph structures. The observed interaction data with multiple 

different actors and activities is highly connected, which makes 

the use of graph platforms relevant. This can also be seen in 

social networks where similar data triples are used to describe 

the actions of users. Our approach to use the xAPI’s triple 

structure and graphs is well related to the much bigger domain 

of social networks and its accompanied discipline of Social 

Network Analysis (SNA). In social networks the W3C Activity 

Streams [18] standard is used to store the users’ actions in an 

interoperable way. The Web frontend typically displays the 

activity streams as a history, e.g., “Aaron likes John’s picture”. 

SNA is used to analyze the highly connected data, for example 

to search for cliques and neighborhoods, expert finding [19], 

[20], or to look for so-called "influencers". The possibilities of 

SNA have also been recognized for e-learning where one is 

interested in relationships between learners, or between learners 

and the offered (learning) objects or activities [7]. 

At first, the xAPI data streams must be stored, and its graph 

nature with nodes and relationships motivates the use of graph 

databases [21]. A graph platform which supports both 

transactional storage and data processing is Neo4j [22]. It 

supports transactional processing and analytical processing of 

graph data, i.e., it is a graph database with included graph 

analytics facilities like commonly used graph algorithms. In 

contrast to typical relational databases, graph databases belong 

to the NoSQL databases where the data is not required to adhere 

to predefined schema [21]. Since we make use of the JSON-

formatted xAPI statements, the use of NoSQL databases is 

apparent. While JSON xAPI statements are typically stored in 

xAPI Learning Record Stores (LRS), which typically use 

NoSQL document-oriented databases, these databases however 



do not provide graph models that promote relationships, nor the 

possibility to run graph algorithms for analytics purposes. 

The underlying theory for graph databases and its graph models 

is graph theory. Graph theory is the study of mathematical 

graph structures. A graph is a structure in which the set of 

objects form pairs having similarity among them. These objects 

are called vertices or nodes, connected to other vertices by 

edges. There are two types of graphs: directed and undirected 

graphs. Directed graphs are asymmetrical since the relationship 

between the nodes is unidirectional in nature. Undirected 

graphs, in contrast, are symmetrical because the connecting 

edges between the vertices represent the reciprocated 

relationship. In the context of this work, we deal with acyclic 

directed graphs. 

As an example how to apply graph theory to serious games, we 

look at our field of application, aerial image interpretation, and 

at a serious game for professional image interpreter training 

[23]. In such a game the users learn how to systematically plan 

and task the correct imagery sensor, and how to correctly 

interpret images towards a standardized report. In the game, the 

users interact with a virtual weather report console in order to 

then carry out sensor deployment planning depending on the 

current or predicted weather conditions. Obviously, the user 

should not task an optical sensor for clouded weather conditions 

when only clouds are to be seen; instead, a radar image sensor 

should be used. One learning objective in the game is to first 

look at the weather forecast to employ to correct sensor 

deployment strategy. 

Using graph analysis and machine learning, models of 

interaction patterns can be learned, e.g. which activities follow 

each other. In the example, the first step is to first view the 

weather console, then perform sensor scheduling; see "next" 

connections in Figure 2. Further, the graph shows which 

users/actors did not follow typical interaction sequences. In the 

example, actor A3 did not view the weather report first before 

scheduling a sensor, which can be problematic and not 

congruent with the learning objective. 

A1 A2 A3

Weather
Console

Sensor
Tasking

Sensor
Deployment

o
p
en

execu
te

next

 
Figure 2: Example of a simple graph structure from observed 

user interaction data. Three actors (circles A1-A3) use 

different objects (green rectangles) with different interaction 

verbs (connections "open", "plan", "execute"). 

Relationships can also be learned automatically (grey 

dashed connections, "next"). 

 

Next, we consider another serious game example and observed 

xAPI activity streams. For the image exploitation game 

“Exercise Trainer” (EXTRA), where the player must produce 

imagery products, we attached an xAPI adapter on various 

game actions (activities). Without loss of generality, this 

approach can also be applied in similar ways to other games, 

computer simulations or assistance systems in general (xAPI 

libraries are available for common programming languages). 

 

 
Figure 3: Serious game “Exercise Trainer” (EXTRA), first level 

with just a factory, a connection and a market. 

 

In our example game session the user “John Doe” starts the 

EXTRA game, adds a single connection between an image 

production “factory” and a distribution point (“market”); he 

makes multiple sells of generated “raw image” products, and 

finally completes the level. The observed xAPI statements are 

(not displaying repeated statements): 

 
<John Doe, initialized, EXTRA Game> 
<John Doe, added, Connection> 
<John Doe, built, raw_image> 
... 
<John Doe, sold, raw_image> 
... 
<John Doe, completed, EXTRA Level> 

 

Important to note is that in the xAPI statements the user is 

always the active executing entity (actor). This follows the 

xAPI specification [4], i.e., not the factories (building raw 

image products) are the active entities (actors) but always the 

user/player. 

The statements are converted to nodes and relationships, 

inserted into the graph-database Neo4j (version 3.5), and 

visualized using Neo4j’s browser client using the Cypher query 

“MATCH (a:Actor)-[v]-(o:Activity) RETURN a,v,o”. 

Figure 4 shows the resulting graph. 

 
Figure 4: Graph visualization of a simple example for 16 xAPI 

activity statements with actor node “John Doe” and 

differently connected activity nodes (colored green). 

Multiple connections for multiple actions, e.g., 9 x “BUILT” 

with varying timestamp attributes (not displayed here). 

 

Problematic with such kind of graphs is that they can become 

very big and hardly comprehensible, least understandable. As 

depicted in our small example the amount of visible 

relationships is identical to the number of xAPI statements 



because for each action (verb) a new relationship with a 

different timestamp attribute is created. For easier and more 

understandable visualizations, identical relationships (verbs) 

should be drawn as just a single connection type. This reflects 

better the basic idea behind graphs to primarily focus on just 

nodes and relationships. 

Further observations will be added to the graph network. In our 

example, a different user “Aaron” also plays the game in a 

similar fashion but with a different product “video” and without 

completing the level (no observed completed-statement). The 

observed xAPI statements are: 

 
<Aaron, initialized, EXTRA Game> 
<Aaron, add, Connection> 
<Aaron, built, raw_image> 
<Aaron, built, video> 
<Aaron, sold, video> 

 

Figure 5 displays the resulting graph; existing nodes are reused 

and a new nodes for “video” is created. However, in this 

visualization identical actions (e.g., “BUILT”) have been joined 

into a single dedicated relationship type; the information about 

the amount of observed actions is stored as an attribute. 

One observation is that such graphs typically follow a power 

law distribution where one quantity varies as a power of 

another. This is especially true for real-world networks with an 

uneven distribution of nodes and relationships [22]. In our case 

the number of actor and activity nodes grows less than the 

number of relationships; new actor and activity nodes produce 

lot’s of new connections, as can be seen in our example. At 

some point the number of activity nodes is saturated, because 

typically an interactive software has a finite number of 

interaction activities – even for adaptive systems with 

dynamically modified environments and modified activity sets. 

Similarly this is also true for the number of actor nodes. 

 
Figure 5: Graph visualization of additional game session from 

user “Aaron”. Existing activity nodes (colored green) are 

reused, e.g., “Connection” and “EXTRA Game”. Identical 

actions are joined into dedicated relationship types. 

 

An important question is how to model the time dimension. For 

e-learning analytics we are interested in questions which 

incorporate time. For example, how long did a user work on a 

certain task, or how fast is the users’ learning pace. In the above 

simple example, we chose to encode time in an attribute field of 

a connection. However, another approach could be to have 

multiple graphs per timestamp, i.e., time would add another 

dimension to the 2D graph. For each observation a new 

identical graph of nodes and connections would be created. 

However, typical graph platforms and graph visualization tools 

are oriented at 2D graph network structures, and time is 

typically encoded as attributes to nodes or connections. 

4. GRAPH ALGORITHMS & E-LEARNING 

This section deals with the algorithmic aspects of the initially 

stated research question, i.e., our interest is what graph 

algorithms are suitable for the analysis of our xAPI interaction 

data graphs. Graph algorithms are used to compute metrics for 

graphs, nodes, or relationships. They can provide insights on 

relevant entities in the graph (e.g., centralities, ranking), or 

inherent structures like communities (e.g., community-

detection, graph-partitioning, clustering). Considering classical 

graph algorithm classes, possible learning analytics for the 

xAPI based observations questions could be: 

- What are central learning objects or interaction 

elements, or what are central users? Or inversely 

which users or objects are less connected? 

- What are typical interaction patterns and how do they 

develop over time? 

- What are costs, capacities or control points? 

- What interactions happen between users? 

- What influence do certain users have on other users? 

- … 

 

In our type of graphs, we observe mainly actor and activity type 

nodes; each user is represented by an actor node, each activity 

or object by an activity node (cf. previous section). For 

computer simulations and serious games the activities can be 

interaction elements like interactive consoles, other player 

avatars or those of non-player characters (NPC), etc.  

 

Node type Source 

Actor User/learner 

Activity Learning object 

(ILE) Interaction element 

 

The type of graph algorithms is oriented at our approach’s 

implementation strategy to use the graph platform Neo4j [22]. 

The interesting algorithm classes for the described field of 

application are (not exhaustive): 

- Centrality [22] 

- Expert Finding [20] [19] 

- Community Detection 

- Social Influence Detection [6] [24] 

- Pattern Detection [25] 

Centrality 

Centrality is one of the most important algorithm used in SNA 

in general [22], and also for e-learning motivated SNA [7]. 

Centrality helps to find the most important nodes by evaluating 

the roles and impact of the node in the network, and to 

understand the group dynamics such as credibility, accessibility, 

outreach and links or connections [22]. 

 

Degree Centrality: measures the number of relationships of a 

node. Examples: 

- Which actor is interacting with many activities? What 

is the in-degree or out-degree of central actor nodes? 

- Which activities are used frequently, or vice versa, 

which are unused and possibly obsolete? 

 

Closeness Centrality: measures which nodes have the shortest 

path to all other nodes. According to Needham and Hodler [22] 

Closeness Centrality should be used when interested in 

information spreading, i.e., to find nodes which disseminate 

things the fastest. Example: which learning activities typically 

happen together? 



 

Betweenness Centrality: measures the control flow between 

nodes and groups. Examples: 

- Which activity has the most influence on the flow 

between actors and activities of the neighborhood 

group? 

- Which activities must not be missed, because they are 

part of important sequences (sub-graphs)? 

 

PageRank: measures a node’s influence by summing up scores 

of the node’s neighbors, and their neighbors. Examples: 

- What are influencing activities and what is their 

ranking? 

- Which actors play an important role in the network, 

which actors can be seen as experts? 

Community Detection 

Most networks form groups or sub-graphs which can be 

identified as patterns. Member nodes of such sub-graph have 

more relationships within the group than with nodes outside 

their group  [22]. Important community detection algorithms are 

triangle count, clustering coefficient, connected components, or 

label propagation. 

 

Triangle Count: measure how many nodes form triangles.  

Example: which activities typically appear together, which form 

a group? 

5. APPLICATION EXAMPLE 

Our prototype implementation follows the described approach: 

a serious game is attached with an xAPI adapter which sends 

selected activities to an xAPI compliant endpoint (cf. Figure 6). 

Typically, this endpoint is a standard xAPI database, a Learning 

Record Store (LRS), which client systems can periodically 

query for new data. However, this would not allow for instant, 

live or online analysis. We propose to use the wiretap enterprise 

integration pattern which, placed between the sending xAPI 

adapter and the receiving LRS. The wiretap can be implemented 

as a Java servlet proxy in our “E-Learning A.I.” (ELAI) 

architecture which targets adaptivity for ILE [26]. The proxy 

approach allows to react to new usage data without a time offset 

which. In our ELAI architecture the xAPI JSON data is 

converted to nodes and relations, and then stored into the graph 

database (cf. Figure 6). The adaptive learning system (ALS) 

gets the output of the above described graph algorithms, e.g., 

selection of the closest nodes (closeness centrality) or most 

influencing node (betweenness centrality) for the currently 

observed user. The adaptivity system sends the interpreted data 

to a controller component which adapts the interactive 

environment [26]. This data could be scalar values which carry 

information on the users’ performance, skill level or helping 

level, or recommendations in form of modified content, text, 

hyperlinks, etc. [26] For learning analytics purposes the 

reporting output of the LRS, of the graph platform and the ALS 

is made available with a Web-based dashboard (example in 

Figure 7). 

 

 

 

 
 

Figure 6: Data processing architecture. 

 
Figure 7: Example for a graph visualization in a learning 

analytics dashboard, segment for a selected user. 

6. CONCLUSION 

Adaptive interactive learning environments (AILE) need 

dynamic and flexible data structures for user or learner 

modeling, and to model the interactive learning environments 

(ILE). Graph structures can provide a basis for this modeling. In 

this paper we describe how to make use of graph databases and 

their algorithms for the characterization and analysis of ILE. In 

respect to standard input-processing-output, we use the e-

learning standard xAPI as input; it is converted to graph 

structures which a graph platform like Neo4j can process; the 

output from graph algorithms, like degree centrality or expert 

finding, can be visualized for the user (e.g., in a learning 

analytics dashboard), or it can be used in the adaptivity logic of 

AILE to determine the next best adaptation strategy, e.g., 

recommendation of the closest connected and highest ranked 

activity node. On basis of our xAPI based graph structures the 

paper presents a selection of graph algorithms and their possible 

application examples in the e-learning analysis context.  

7. DISCUSSION 

The graph algorithm selection is preliminary and further 

research studies must show how the algorithms react to real 

data. Also, further research should study the influence of 

different game genres on the resulting graph structures, e.g., 

what graph similarities (patterns) exist between different genres 

and how do they differ. This is important for automatic analysis 

of games, because such graphs could act as classification 

features to automatically determine the type (genre) of a game 

or as a basis for a metric for retrieval tasks.  



The paper currently just describes a syntactic approach, i.e., 

how to transform incoming data into graph structures. There is 

no semantic information. A semantic level should be 

considered, what – in a semantic sense – did the users do? How 

is the mapping to learning objectives, and how to determine if a 

user has achieved the learning objectives? Subgraph and pattern 

matching according to an additional reference model graph 

could be done here. A study is going to be conducted to 

examine what the actual effect of the approach to real e-learning 

courses is.  
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