
Possible interactions Chosen / Previous interaction

Attention

Forgetfulness

Knowledge

Planing

Difficulty

Workload

Emotions

Learning style

Expert

solutionCurrent

state

Current

state

Goal

state

Goal

state

Future

state

Future

state

Future

state

Feedback

Suggestions

Help

Scenario changes

Feedback

Entity state data

Game state data

Interaction data

Current

state

Current

state

Goal

state

Goal

state

Future

state

Future

state

Future

state

Current

state

Goal

state

Future

state

Future

state

Future

state

Current

state

Goal

state

Future

state

Future

state

Future

state

Impasse / ObstacleImpasse / Obstacle

In Zusammenarbeit mit der Abteilung Interoperabilität und Assistenzsysteme (IAS) des Fraunhofer-
Instituts für Optronik, Systemtechnik und Bildauswertung IOSB

Realizing Cognitive User
Models for Adaptive Serious
Games
Realisierung kognitiver Benutzermodelle für adaptive Lernspiele
Master-Thesis von Paul Michael Aydinbas
18. März 2019

FG Psychologie der
Informationsverarbeitung
Fachbereich Humanwissenschaften

Realizing Cognitive User Models for Adaptive Serious Games
Realisierung kognitiver Benutzermodelle für adaptive Lernspiele

Vorgelegte Master-Thesis von Paul Michael Aydinbas

1. Gutachten: Prof. Constantin A. Rothkopf, TU Darmstadt
2. Gutachten: Dipl.-Inf. Alexander Streicher, Fraunhofer-Institut für Optronik, Systemtechnik und
Bildauswertung IOSB

Tag der Einreichung:

Erklärung zur Abschlussarbeit gemäß § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Paul Michael Aydinbas, die vorliegende Master-Thesis ohne
Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht
worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde
vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung
eingereichte elektronische Fassung überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Datum / Date: Unterschrift / Signature:

Abstract
Playing games is fun, promotes a wide range of cognitive skills, and has motivational, emotional, and
social benefits. What could be more obvious than to use games for learning, an otherwise considered
strenuous activity. Educational serious games follow the premise that games are effective learning
environments, primary because of their motivational function.
However, in order to keep learners engaged over a longer period of time, games must strike the right
balance between being challenging and fun. To allow for experiencing a state of “flow”, the game has to
be adaptive so it can react to the learner’s needs. Adaptivity, though, requires a dynamic assessment of
the learner’s current cognitive state. The challenge is to intervene adaptively at the right time.
Two methods from the field of computational cognitive science were tested for their applicability to the
realization of cognitive user models: Soar 9, a hybrid cognitive architecture and hierarchical Bayesian
models (HBMs). Soar was not considered useful for the implementation of cognitive user models, but
approaches for the integration of Soar into adaptive systems were demonstrated. The probabilistic
programming framework PyMC3 was used to implement four HBMs. The models made use of the
Cognitive Load Theory to describe the relationship between the characteristics of the learner and the
characteristics of the learning material. The models were validated extensively.
A detailed model comparison was conducted to obtain the best model. The final model is able to explain
three observational variables for data sets with different subjects and concepts. The model can accurately
predict individual differences as well as group differences. The model’s output are probability distributions
that allow for arbitrary inferences about the model’s parameters and provide the uncertainty associated
with these inferences.
The comparison of Soar with PyMC3 showed a clear advantage of PyMC3 for realizing cognitive user
models. PyMC3 and HBMs met all the requirements for a cognitive user model. The developed Python
package CogIUM can be used to build, train, and test cognitive user models. To the best knowledge of
the author, this is the first application of a HBM for realizing cognitive user models for adaptive serious
games. Several issues with the final model were identified and discussed. In addition, possible future
work to further evaluate the model was presented.

i

Zusammenfassung
Spielen bereitet Freude, fördert ein breites Spektrum an kognitiven Fähigkeiten und hat motivationale,
emotionale sowie soziale Vorteile. Was läge demzufolge näher, als Spiele zum Lernen zu nutzen, eine
ansonsten als eher anstrengend empfundene Aktivität. Lernspiele folgen der Prämisse, dass Spiele effektive
Lernumgebungen sind, primär aufgrund ihrer Motivationsfunktion.
Um Lerner jedoch über einen längeren Zeitraum zu binden, müssen Spiele das richtige Gleichgewicht
zwischen Herausforderung und Spaß finden. Um einen Zustand des „Flows“ zu erleben, muss das Spiel
adaptiv sein, damit es auf die Bedürfnisse des Lerners reagieren kann. Anpassungsfähigkeit erfordert
jedoch eine dynamische Bewertung des aktuellen kognitiven Zustands des Lerner. Die Herausforderung
besteht darin, zum richtigen Zeitpunkt adaptiv zu intervenieren.
Zwei Methoden aus dem Bereich der computergestützten Kognitionswissenschaft wurden auf ihre Eignung
für die Realisierung kognitiver Nutzermodelle getestet: Soar 9, eine hybride kognitive Architektur, und
hierarchische Bayesianische Modelle (HBMs). Soar wurde nicht als geeignet für die Implementierung
kognitiver Benutzermodelle angesehen, aber es wurden Ansätze für die Integration von Soar in adaptive
Systeme aufgezeigt. Mit dem probabilistischen Programmierframework PyMC3 wurden vier HBMs imple-
mentiert. Die Modelle nutzten die Theorie der kognitiven Last (CLT), um den Zusammenhang zwischen
den Eigenschaften des Lerners und den Eigenschaften des Lernmaterials zu beschreiben. Die Modelle
wurden umfassend validiert.
Ein detaillierter Modellvergleich wurde durchgeführt, um das beste Modell zu ermitteln. Das endgültige
Modell ist in der Lage, drei Beobachtungsvariablen für Datensätze mit unterschiedlichen Personen und
Konzepten zu erklären. Das Modell kann sowohl individuelle Unterschiede als auch Gruppenunterschiede
genau vorhersagen. Die Ergebnisse des Modells sind Wahrscheinlichkeitsverteilungen, die beliebige
Inferenzen in Bezug auf die Modellparameter zulassen und zudem ein Maß für die Unsicherheit der
Inferenz liefern.
Der Vergleich von Soar mit PyMC3 zeigte einen klaren Vorteil von PyMC3 bei der Realisierung kognitiver
Nutzermodelle. PyMC3 und hierarchische Bayesianische Modelle erfüllten alle Anforderungen an ein
kognitives Benutzermodell. Das entwickelte Python-Paket CogIUM kann zum Erstellen, Trainieren und
Testen kognitiver Benutzermodelle verwendet werden. Nach bestem Wissen des Autors ist dies die erste
Anwendung eines hierarchischen Bayesianischen Modells zur Realisierung kognitiver Benutzermodelle für
adaptive Lernspiele. Mehrere Probleme mit dem endgültigen Modell wurden identifiziert und diskutiert.
Außerdem wurden mögliche zukünftige Arbeiten zur weiteren Bewertung des Models vorgestellt.

ii

List of Acronyms

CLT Cognitive Load Theory
CogIUM cognitive intelligent user model
ECL extraneous cognitive load
EDM Educational Data Mining
ELAI E-Learning Artificial Intelligence
ESS effective sample size
GCL germane cognitive load
HBM hierarchical Bayesian model
HDI highest density interval
ICL intrinsic cognitive load
ITS Intelligent Tutoring Systems
KL Kullback-Leibler divergence
LA Learning Analytics
LMS Learning Management System
LOO-CV leave-one-out cross-validation
LRS Learning Record System
MAE mean absolute error
MCMC Markov chain Monte Carlo
RMSE root mean squared error
WME working memory element
xAPI Experience API
ZPD zone of proximal development

iii

Contents

1. Introduction1. Introduction 1
1.1. Motivation1.1. Motivation . 6
1.2. Research Objectives and Intended Approach1.2. Research Objectives and Intended Approach . 8
1.3. Project Environment1.3. Project Environment . 9
1.4. Structure1.4. Structure . 10

2. Conceptual Background2. Conceptual Background 12
2.1. How to Model User Behavior – Paradigms in Cognitive Science2.1. How to Model User Behavior – Paradigms in Cognitive Science 12

2.1.1. General artificial intelligence – cognitive architectures2.1.1. General artificial intelligence – cognitive architectures 15
2.1.2. Handle uncertainty – Bayesian modeling2.1.2. Handle uncertainty – Bayesian modeling . 29

2.2. How to Capture User Behavior – Experience API2.2. How to Capture User Behavior – Experience API . 43
2.3. How to Think About User Behavior – Learner Attributes2.3. How to Think About User Behavior – Learner Attributes . 47

2.3.1. Cognitive Load Theory2.3.1. Cognitive Load Theory . 48

3. Literature Review3. Literature Review 53
3.1. Computational Cognitive Modeling3.1. Computational Cognitive Modeling . 53

3.1.1. Cognitive architectures3.1.1. Cognitive architectures . 53
3.1.2. The student model in Intelligent Tutoring Systems3.1.2. The student model in Intelligent Tutoring Systems . 55

3.2. Model Evaluation and Model Comparison3.2. Model Evaluation and Model Comparison . 58
3.2.1. Posterior predictive check3.2.1. Posterior predictive check . 58
3.2.2. RMSE and MAE3.2.2. RMSE and MAE . 59
3.2.3. WAIC and LOO3.2.3. WAIC and LOO . 60
3.2.4. Bayes factor3.2.4. Bayes factor . 64
3.2.5. Hierarchical models3.2.5. Hierarchical models . 65

3.3. Measuring Cognitive Load3.3. Measuring Cognitive Load . 66

4. Concept4. Concept 69
4.1. Interaction Between Learner and Cognitive User Model4.1. Interaction Between Learner and Cognitive User Model . 69
4.2. Interaction Patterns for Lost Earth4.2. Interaction Patterns for Lost Earth . 72

4.2.1. Identify the data4.2.1. Identify the data . 78
4.3. Realizing Cognitive User Models4.3. Realizing Cognitive User Models . 80

4.3.1. With cognitive architectures4.3.1. With cognitive architectures . 81
4.3.2. With (hierarchical) Bayesian models4.3.2. With (hierarchical) Bayesian models . 88

5. Implementation5. Implementation 103
5.1. Bayesian Inference with PyMC35.1. Bayesian Inference with PyMC3 . 103
5.2. The CogIUM Python Package5.2. The CogIUM Python Package . 107

5.2.1. The data generator5.2.1. The data generator . 109
5.2.2. The model subpackage5.2.2. The model subpackage . 111
5.2.3. The plots5.2.3. The plots . 114

5.3. Validation5.3. Validation . 115
5.3.1. Model comparison – a case study5.3.1. Model comparison – a case study . 115
5.3.2. Model extension – a case study5.3.2. Model extension – a case study . 132
5.3.3. Extended model validation5.3.3. Extended model validation . 137

iv

5.3.4. Discussion5.3.4. Discussion . 141
5.4. How to Extend the Model Further5.4. How to Extend the Model Further . 144

6. Application Example6. Application Example 146

7. Conclusion and Recommendations7. Conclusion and Recommendations 152
7.1. Assessment of Requirements7.1. Assessment of Requirements . 153
7.2. Open Questions and Future Work7.2. Open Questions and Future Work . 156

BibliographyBibliography 159

A. Supplementary Material for Chapter ConceptConceptA. Supplementary Material for Chapter ConceptConcept 167

B. Supplementary Material for Chapter ImplementationImplementationB. Supplementary Material for Chapter ImplementationImplementation 169

Contents v

List of Figures

1.1. Flow model and zone of proximal development1.1. Flow model and zone of proximal development . 4
1.2. Model of game-based learning1.2. Model of game-based learning . 5
1.3. Integrated framework for game-based learning1.3. Integrated framework for game-based learning . 5
1.4. Adaptivity supports flow1.4. Adaptivity supports flow . 6
1.5. Four-process adaptive cycle1.5. Four-process adaptive cycle . 7
1.6. The E-Learning Artificial Intelligence (ELAI) framework1.6. The E-Learning Artificial Intelligence (ELAI) framework . 10

2.1. Modeling approaches in cognitive neuroscience2.1. Modeling approaches in cognitive neuroscience . 14
2.2. Physical symbolic systems2.2. Physical symbolic systems . 18
2.3. Eleven hypotheses about general intelligence2.3. Eleven hypotheses about general intelligence . 20
2.4. Classic Soar2.4. Classic Soar . 22
2.5. Soar 92.5. Soar 9 . 22
2.6. Problem solving as movement through a problem space2.6. Problem solving as movement through a problem space . 24
2.7. Soar’s working memory2.7. Soar’s working memory . 25
2.8. Soar’s decision cycle2.8. Soar’s decision cycle . 27
2.9. Exemplary hierarchical Bayesian model2.9. Exemplary hierarchical Bayesian model . 32
2.10.Graphical model for the exam scores example2.10.Graphical model for the exam scores example . 33
2.11.Bayesian data analysis2.11.Bayesian data analysis . 36
2.12.The posterior distribution2.12.The posterior distribution . 37
2.13.Example of Bayesian data analysis2.13.Example of Bayesian data analysis . 42
2.14.Semantic network of the statement model of xAPI2.14.Semantic network of the statement model of xAPI . 46
2.15.Cognitive Load Theory model2.15.Cognitive Load Theory model . 51
2.16.Influence of ECL and motivation on GCL2.16.Influence of ECL and motivation on GCL . 52

3.1. Predictive accuracy measures3.1. Predictive accuracy measures . 64
3.2. Hierarchical Bayesian models for model comparison3.2. Hierarchical Bayesian models for model comparison . 65

4.1. Interaction between a user and an adaptive system4.1. Interaction between a user and an adaptive system . 71
4.2. Lost Earth – Ark4.2. Lost Earth – Ark . 73
4.3. Lost Earth – 4X strategy4.3. Lost Earth – 4X strategy . 74
4.4. Lost Earth – mission list4.4. Lost Earth – mission list . 74
4.5. Lost Earth – reconnaissance mission4.5. Lost Earth – reconnaissance mission . 75
4.6. Lost Earth – select and task sensor4.6. Lost Earth – select and task sensor . 75
4.7. Lost Earth – weather console4.7. Lost Earth – weather console . 76
4.8. Lost Earth – mission summary4.8. Lost Earth – mission summary . 76
4.9. Activity diagram for Lost Earth4.9. Activity diagram for Lost Earth . 77
4.10.Soar Debugger4.10.Soar Debugger . 82
4.11.VisualSoar4.11.VisualSoar . 83
4.12.Realizing cognitive user models with Soar4.12.Realizing cognitive user models with Soar . 87
4.13.Realizing cognitive user models with hierarchical Bayesian models4.13.Realizing cognitive user models with hierarchical Bayesian models 89
4.14.Graphical model of first draft CogIUM4.14.Graphical model of first draft CogIUM . 91
4.15.Graphical model of CogiumOrig2Obs4.15.Graphical model of CogiumOrig2Obs . 95
4.16.Beta distribution4.16.Beta distribution . 96
4.17.Choice of prior distributions for motivation and prior knowledge4.17.Choice of prior distributions for motivation and prior knowledge 97
4.18.Graphical model of CogiumImproved2Obs4.18.Graphical model of CogiumImproved2Obs . 98

vi

4.19.Graphical model of CogiumImprovedHierarchical2Obs4.19.Graphical model of CogiumImprovedHierarchical2Obs . 101
4.20.Graphical model of CogiumImprovedHierarchical3Obs4.20.Graphical model of CogiumImprovedHierarchical3Obs . 102

5.1. PyMC3 example output5.1. PyMC3 example output . 106
5.2. CogIUM Data Generatior5.2. CogIUM Data Generatior . 110
5.3. CogIUM UML Diagram5.3. CogIUM UML Diagram . 113
5.4. Model comparison – group differences in the posterior5.4. Model comparison – group differences in the posterior . 120
5.5. Model comparison – individual differences in the posterior for motivation5.5. Model comparison – individual differences in the posterior for motivation 121
5.6. Model comparison – individual differences in the posterior for prior knowledge5.6. Model comparison – individual differences in the posterior for prior knowledge 122
5.7. Model comparison – individual differences in the posterior for GCL5.7. Model comparison – individual differences in the posterior for GCL 123
5.8. Model comparison – individual differences in the posterior for free working memory capacity5.8. Model comparison – individual differences in the posterior for free working memory capacity124
5.9. Model comparison – individual posterior predictive check for task success5.9. Model comparison – individual posterior predictive check for task success 125
5.10.Model comparison – individual posterior predictive check for mission score5.10.Model comparison – individual posterior predictive check for mission score 126
5.11.Model comparison – posterior predictive check5.11.Model comparison – posterior predictive check . 127
5.12.Posterior predictive error5.12.Posterior predictive error . 129
5.13.Within-sample predictive accuracy5.13.Within-sample predictive accuracy . 129
5.14.Model extension – individual differences in the posterior5.14.Model extension – individual differences in the posterior . 133
5.15.Model extension – group differences in the posterior5.15.Model extension – group differences in the posterior . 134
5.16.Model extension – individual posterior predictive check5.16.Model extension – individual posterior predictive check . 135
5.17.Model extension – posterior predictive check5.17.Model extension – posterior predictive check . 136
5.18.Model validation – influence of sample size5.18.Model validation – influence of sample size . 140

B.1. CogIUM trace summary plotB.1. CogIUM trace summary plot . 170
B.2. CogIUM posterior distribution plotB.2. CogIUM posterior distribution plot . 170
B.3. CogIUM concept differences plotB.3. CogIUM concept differences plot . 171
B.4. CogIUM group differences plotB.4. CogIUM group differences plot . 172
B.5. CogIUM posterior predictive plotB.5. CogIUM posterior predictive plot . 173
B.6. CogIUM posterior predictive error plotB.6. CogIUM posterior predictive error plot . 174

List of Figures vii

List of Tables

2.1. The “mind as a computer” metaphor (based on Thagard, 20052005, p. 11).2.1. The “mind as a computer” metaphor (based on Thagard, 20052005, p. 11). 12
2.2. Notation in graphical models2.2. Notation in graphical models . 32
2.3. Summary statistics of MCMC2.3. Summary statistics of MCMC . 41

4.1. Set of observable variables in Lost Earth4.1. Set of observable variables in Lost Earth . 78
4.2. Main variables of CogIUM and their domains.4.2. Main variables of CogIUM and their domains. 90

5.1. Model comparison – data sets5.1. Model comparison – data sets . 116
5.2. Model comparison – within-sample predictive accuracy5.2. Model comparison – within-sample predictive accuracy . 131
5.3. Model validation – data sets5.3. Model validation – data sets . 138
5.4. Model validation – predictive accuracy5.4. Model validation – predictive accuracy . 138

7.1. Compliance with the requirements7.1. Compliance with the requirements . 154

A.1. List of all implemented models in the CogIUM package.A.1. List of all implemented models in the CogIUM package. 168

viii

List of Listings

2.1. A simplified version of the Soar algorithm.2.1. A simplified version of the Soar algorithm. 28
2.2. xAPI statement according to CMI-5 specifications2.2. xAPI statement according to CMI-5 specifications . 45

4.1. Exemplary production in Soar 94.1. Exemplary production in Soar 9 . 82
4.2. Initialization application rule for the Water Jug problem4.2. Initialization application rule for the Water Jug problem . 84

5.1. A simple, but fully functional example with PyMC35.1. A simple, but fully functional example with PyMC3 . 107
5.2. The mapping of the generate_observations() function5.2. The mapping of the generate_observations() function . 111
5.3. An example call of the generate_observations() function5.3. An example call of the generate_observations() function . 111
5.4. An example setup of all four models of the CogIUM package.5.4. An example setup of all four models of the CogIUM package. 113

B.1. Source code for CogiumImprovedHierarchical3ObsB.1. Source code for CogiumImprovedHierarchical3Obs . 175

ix

1 Introduction
„Wenn wir“ sagtest Du, „die Menschen nur nehmen, wie sie sind, so machen

wir sie schlechter; wenn wir sie behandeln als wären sie, was sie sein sollten,

so bringen wir sie dahin, wohin sie zu bringen sind.“

If you treat an individual as they are, they will remain how they are. But if

you treat them as if they were what they ought to be and could be, they will

become what they ought to be and could be.

In Wilhelm Meister’s Lehrjahre (Book VIII, Chapter four)

Johann Wolfgang von Goethe

In an ever more complex world that changes more and more rapidly, we should pose the question:

What are the skills of the 21st century that we need to prevail and that we should taught our children so

that they are prepared for the upcoming future? The relevant skill set of the 21st century is dramatically

different from the skills the current educational system values. In the past, traditional educational

practices emphasized only one correct answer and promoted conformity and standardization instead

of individual solutions. Today, we need critical thinking, creativity, collaboration, and communication.

Critical thinking includes the skills scientific reasoning, systems thinking, computational thinking, decision

making, and problem solving. Creativity is made of divergent thinking, innovative thinking, originality,

inventiveness, and the ability to view failure as an opportunity. Being able to collaborate means being

able to work effectively and respectfully with diverse teams, make compromises to accomplish goals, and

share responsibility. Finally, communication means to articulate thoughts and ideas in a variety of forms.

When classical teaching methods are no longer appropriate for the modern world’s requirements, what

are the alternatives? (Qian and Clark, 20162016)

The rest of this introduction gives a possible answer to this question and states the main topics that

guide the research questions of this thesis.

The quote from Goethe already mentioned the importance of individual education—to promote and

foster the individual strengths and abilities. New developments in the fields of computer science, artificial

intelligence and cognitive science provide complete new opportunities for education. Artificial intelligence

research led to systems with a deeper understanding of knowledge, especially procedural knowledge, that

is, knowledge about how people perform and solve tasks. Research in cognitive science led to a deeper

understanding of how people think, solve problems, and learn. Most importantly, education is no longer

understood as a universal, one-sided approach. Cognitive research taught us that individual differences

1

and preferred learning styles influence the learning process. Furthermore, education should be based on

individual, one-to-one tutoring instead of conventional teaching. Ideally, students are guided in asking

their own questions and gathering evidence that allows them to find answers to those questions. Likewise,

teaching meta-cognitive skills can help students to learn more effectively when focusing on their own

learning approaches. However, these methods are nearly impossible to implement in classrooms without

technology. (Woolf, 20092009)

Computers have been used for educational purposes since 1959. These first computer-based or

computer-aided instruction systems have been shown to increase student scores by 10 % to 20 %, to

decrease the time to achieve goals by one third, and to improve class performance (Woolf, 20092009). However,

these early systems had several drawbacks, for example inflexible frame-based methods with a pre-defined

sequence of topics, and no individual treatment of students, no matter the student’s performance. Thus,

computer-based instruction systems were developed further into Intelligent Tutoring Systems (ITS). ITS

differ from traditional computer-based instruction by generating individual responses to students’ input

(Woolf, 20092009). Besides the ongoing discussion about the overall effect of ITS on learning, it seems

justified to say that ITS can be “very effective instructional tools” (Kulik and Fletcher, 20162016, p. 67).

Students, who learned with the help of an ITS, outperformed students from conventional classes in 92 %

of 50 controlled evaluations, and the improvement in performance due to ITS use can be considered

“substantively important” in 78 % of the 50 studies.

What are the visions of the field? What should an ideal intelligent tutor software be capable of?

Woolf (20092009) lists two important key aspects:

ITS treat students
individually

Intelligent tutors consider each student’s background, learning style, and current

needs and choose appropriate learning material according to this knowledge to

meet the exact need of the student. In addition, ITS infer the student’s emotion

and affective state and can respond appropriately to these emotions. Examples of

affective states are frustration and boredom.

ITS know
how to teach

The software not only contains the academic material but also qualitative models

of each domain to be taught. An ITS follows a student’s reasoning about the

domain knowledge, engages in discussions, and answers questions on various

topics. Secondly, new tutor software is easily build and added onto existing tutors.

Besides many success stories of ITS that provide learning support, make use of natural language, model

complex pedagogical strategies, recognize and respond to differences in student emotion, most of those

points are hardly fulfilled even by modern ITS and remain visions (Baker, 20162016). In addition, the

development of ITS remains “costly and expensive” and inspired a new research field looking into ITS

authoring tools (Dermeval et al., 20172017).

2

Although ITS might use simple quizzes or window-based applications as medium, a more natural

choice are games. Schools are still designed with the goal of producing “standardized learners and, most

importantly, sort students into those groups”, whereas games foster creative thinking and problem solving

(Squire, 20052005). Play as one form of gaming has been an important medium of learning throughout human

history (Pellegrini, 2009a2009a), serving both immediate as well as deferred benefits by increasing behavioral

and cognitive flexibility (Pellegrini, 2009b2009b). Nowadays, digital games have become mainstream with an

ever growing acceptance: 99 % of boys and 94 % of girls are playing digital games and time spent on

playing digital games for this group of age ranges from approximately 7 to 10 hours per week (Plass et al.,

20152015)—and there is no reason to believe that the appeal of digital games has declined over time (Winn

and Heeter, 20092009) or decreases with age (De Schutter, 20112011).

The research field of game-based learning is especially dedicated to research questions about learning

outcomes in games. One definition given by Qian and Clark (20162016, p. 51) states that “Game-based learning

describes an environment where game content and game play enhance knowledge and skills acquisition,

and where game activities involve problem solving spaces and challenges that provide players/learners

with a sense of achievement”. A game in this sense is “a system in which players engage in an artificial

conflict, defined by rules, that results in a quantifiable outcome” (Plass et al., 20152015, p. 259). Good games

are neither too easy, which would result in boredom, nor too difficult, which would result in frustration.

Good games aim for the “sweet spot”, where players have a chance to succeed if they are engaged (Plass

et al., 20152015). This idea is closely related to the state of flow and a player’s zone of proximal development.

The flow model describes the characteristics of optimal experience and its proximal conditions and

tries to understand the phenomenon of intrinsically motivated activities (Nakamura and Csikszentmihalyi,

20092009). The conditions for entering the state of flow are twofold: a perceived challenge, that can be

overcome with the current skills, and clear proximal goals as well as immediate feedback about the

progress towards this goal (Figure 1.1a1.1a on the following page) (Nakamura and Csikszentmihalyi, 20092009).

There exists several updated versions of the flow model that differentiate the challenge/skill terrain

further into four or eight experiential “channels” (Figure 1.1b1.1b on the next page). Besides the experience

of flow, there is another kind of experience in these updated models that might be intrinsically rewarding:

one that is characterized by conservation of energy.

The second, similar concept of zone of proximal development (ZPD) was introduced by Vygotsky

(19781978) as “the distance between the actual development level as determined by independent problem

solving and the level of potential development as determined through problem solving under adult

guidance or collaboration of more capable peers”. ZPD is usually used to describe apprenticeship-

learning approaches and can be characterized from both cognitive and affective perspectives. Instructional

materials should not be too difficult or too easy, and the learner should not experience boredom, confusion,

or frustration (Figure 1.1c1.1c on the following page) (Woolf, 20092009). Plass et al. (20152015) list more arguments

for the use of games for learning, like their motivational function, a wide range of ways to engage learners,

multiple ways of making a game adaptive and of personalizing experiences, and their tolerance for failure.

3

(a) The original model of flow state
(from Nakamura and Csikszentmi-
halyi, 20092009, p. 196). Flow is experi-
enced when there is a balance be-
tween the experienced challenge
and the actor’s perceived skill set.

(b) The extended model of flow state
(from Nakamura and Csikszentmi-
halyi, 20092009, p. 201). In compar-
ison to the original model, bal-
ance of experienced challenge an
perceived skills is not enough but
has to be above the actor’s aver-
age levels of challenge and skill.

(c) Operational definition of Vygot-
sky’s (19781978) zone of proximal de-
velopment (from Woolf, 20092009,
p. 126). The diagram depicts a
student’s trajectory through time
in the space of tutorial content dif-
ficulty versus a student’s evolving
skill level.

Figure 1.1.: The flow model and concept of zone of proximal development, two prominent concepts to
describe engaging games.

What are the main components of successful games and which game elements support the learner’s

learning success? The basic structure of all games consists of three key elements: a challenge, a response,

and feedback (Figure 1.21.2 on the next page) (Plass et al., 20152015). When we talk about educational games,

that is, games that are a subset of serious games with a clear focus on learning, most researchers agree on

the following building blocks of games: game mechanics, visual aesthetics, narrative, incentives, musical

score, and the learning objective. These design features facilitate different forms of engagement and

contribute to a playful experience (Figure 1.31.3 on the following page). There are two very important

principles among the cognitive foundations of game-based learning: scaffolding along with relevant

feedback and dynamic assessment (Plass et al., 20152015). The first describes a teaching strategy that “controls

aspects of a task that are beyond the learner’s capabilities, thereby allowing the learner to complete a task

that he or she would not be able to do on their own” (Plass et al., 20152015, p. 266). This strategy is directly

linked to the concept of ZPD. For effective scaffolding to take place the task being solved must fall within

the learner’s ZPD. Scaffolding can be realized by tutorial levels and appropriate feedback and support,

ideally implemented as dynamic instead of static feedback. Plass et al. note, however, that scaffolding

has been much more limited in games for learning due to the increased difficulty in doing the dynamic

assessment. Effective scaffolding requires an accurate and ongoing assessment of learner’s knowledge

and skills. This is true for all forms of adaptivity. Process and product data, that is, data from both the

activities of the learner and from anything created by the learner within the game, are key information

that can be obtained from games to facilitate dynamic assessment.

The goal of dynamic adaptive systems is to keep the learner motivated, to uphold the learner’s intrinsic

motivation for interaction and learning, and, ultimately, to increase the learning outcome. Dynamic

4

Magic Circle

Feedback

Challenge

Response

Game Design Features

Incentive System

Game Mechanics
(Learning Mechanics &
Assessment Mechanics)

Aesthetic Design

Narrative Design

Musical Score

Figure 1.2.: A simple model for game-based learning (based on Plass et al., 20152015, p. 262). The key
components of any game are a challenge, a response, and feedback. A loop is generated
when the feedback of the player leads to a new challenge posed by the game. The game
design features are at the center of the learning experience.

Figure 1.3.: An integrated framework for game-based learning (from Plass et al., 20152015, p. 263). Games
are uniquely qualified to implement existing models of learning and offer multiple types of
engagement. Design features ensure the playful experience.

5

Figure 1.4.: How to stay in the flow channel (from Streicher and Smeddinck, 20162016, p. 341). Adaptive
measures (dotted arrow-lines) aim at keeping the user’s interaction route through the game
(solid arrow-lines) within the area where a flow state can be experienced.

adaptive systems can help achieving these goals by adapting the educational game to the needs of the

learner according to their knowledge level, skill, and experience. They must consider the “heterogeneity

of the users and their varying knowledge levels, cultural backgrounds, usage surroundings, skills, etc.”

(Streicher and Smeddinck, 20162016, p. 334). The aforementioned balance of risk of failure or challenge and

the chance to overcome the challenge is not constant over time because a learner’s skill is “developing,

deteriorating, or temporarily boosted or hindered” during or between different gaming sessions (Streicher

and Smeddinck, 20162016, p. 342). Here, a dynamic system can adapt the level of challenge to meet the

learner’s current level of skill and keep them within the flow channel (Figure 1.41.4). Parasuraman et al.

(20002000) present a model for types and levels of automation to help decide which system functions should

be automated. Shute and Zapata-Rivera (20122012) present a four-process adaptive cycle that is based on

accurate diagnosis of learner characteristics, for example knowledge, skill, and motivation (Figure 1.51.5

on the following page). The four stages are capture, analyze, select, and present. For the purpose of

this work the most important part is the analyze stage in which a model of the learner is created and

maintained in relation to the domain. Information about the learner is typically gained by inferences on

current states, that is, the system can infer the learner’s knowledge or their intended next actions based on

the learner’s performance in the learning domain or from the learner’s interactions. The student model is

the central aspect of any dynamic adaptive system for educational games. Once a student model has been

built and trained, in a next step adaptive measures can be selected based on the learner’s current status as

represented in the student model and the purpose of the system (Shute and Zapata-Rivera, 20122012).

1.1 Motivation

Educational serious games, that is, serious games with a clear focus on learning and knowledge acquisition,

can lead to better performance, better concept retention, and greater commitment along with the general

incentives gaming can offer (Boyle et al., 20162016). However, serious games require a permanent balance –

between gaming and learning and between the challenge posed by the game versus the player’s ability –

to assure immersive gaming and effective learning (Kickmeier-Rust and Albert, 20122012; Kickmeier-Rust,

Mattheiss, et al., 20112011). To achieve both enjoyment and successful learning at the same time, appropriate

adaptation is a key requirement. Adaptation in this context means that a system is able to automatically

1.1. Motivation 6

Figure 1.5.: The four-process adaptive cycle to promote learning (from Streicher and Smeddinck (20162016,
p. 353), based on Shute and Zapata-Rivera (20122012)). The learner is connected to appropriate
educational material through the use of a learner model.

change its own characteristics to meet the user’s current needs (Oppermann, 19941994). Adaptation and

personalization not only enable effective learning but can lead to “superior gaming experience and

educational gains” (Kickmeier-Rust and Albert, 20122012, p. 25).

Besides the merits of adaptive systems, current computer simulations and digital game-based learning

systems show a profound lack of concepts for didactic adaptivity to the learner’s needs (Streicher and

Roller, 20172017). Furthermore, such systems are most often handcrafted, “one-of-a-kind solutions” (Sottilare

and Gilbert, 20112011, p. 2).

Intelligent Tutoring Systems (ITS) are facing similar problems. ITS are systems with rich, dynamic

models of student knowledge with the ability to adapt their model over time, as the student’s understand-

ing becomes more profound (Woolf, 20092009). However, creating sophisticated ITS remains costly, complex,

and relies on collaborative expertise (Bell, 20152015; Woolf, 20092009).

A system’s ability to show adaptive behavior in an one-to-one tutoring setting relies on its capability

to understand the learner’s current state. This includes modeling the learner’s “unobserved cognitive state”

which comprises their affect, readiness to learn, and their comprehension of the material, none of which

is directly accessible to observation (Sottilare and Gilbert, 20112011, p. 4). To start the adaptation process,

the system must constantly measure the current state of the user to be able to react to undesirable or

unfavorable states just at the right time (Streicher and Smeddinck, 20162016). Timing is a very crucial aspect

for the learner’s acceptance of the system because the system’s response to the learner’s actions has to be

supportive and not obstructive. A response given too early – for example due to an erroneous prediction of

the learner’s perceived difficulty level – might hinder the learner from experiencing a challenging problem

that allows them to go beyond their current level of mastery of a certain domain or knowledge and

thus prevents an optimal learning experience (see the concept of flow, Figure 1.41.4 on the previous page).

Likewise, a response given too late – for example due to the model’s inability to accurately capture the

learner’s current cognitive state – might fail at counteracting a learner’s growing feeling of frustration or

boredom or a loss in motivation and thus, again, prevents an optimal learning experience. Consequently,

1.1. Motivation 7

a key and open research question for any adaptive system is when to adapt (Streicher and Smeddinck,

20162016).

In summary, educational serious games need a build-in adaptivity to react at the right time to the

learner’s current state. To reach this goal, an ongoing dynamic assessment is necessary. Solutions to this

problem exist, but they are either proprietary solutions or overly complex and domain-dependent. Any

solution to the problem of realizing dynamic adaptivity for serious games has to implement a model of

the learner’s internal state along with important cognitive variables. The appropriateness and accuracy of

this cognitive user model will be essential to the overall goal of creating adaptive systems that rely on

these models.

1.2 Research Objectives and Intended Approach

This thesis tries to find answers to the aforementioned open research question: When to adapt? However,

it cannot be the goal to fully answer this question or even to analyze its complete scope. Instead, and as

mentioned above, the thesis starts with the foundation of any adaptive system in the context of e-learning

– the cognitive user model. Having realized a cognitive user model that accurately captures at least parts

of the learner’s real internal cognitive state, the model can be used subsequently to infer the best point in

time for an adaptive response.

To realize cognitive user models for adaptive systems in an e-learning context, the practicality of

two techniques from the field of cognitive modeling will be examined: cognitive architectures and

(hierarchical) Bayesian models. The goal is to build and train a cognitive intelligent user model (CogIUM)

that both accurately represents a part of the learner’s real internal cognitive state and enables the adaptive

system to infer appropriate actions to maintain an optimal learning experience for the learner and, in this

way, ensures the learner’s learning success.

My procedure in this thesis can be summarized by the following steps:

Define scenarios In a first step, eligible scenarios for the system’s adaptive behavior have to be

defined that frame the search for possible techniques. These scenarios are based on

a concrete digital educational serious game and cover only a small part of all the

possible actions the game offers. Again, the goal of this thesis is not to develop a

model for the whole game but rather to demonstrate that, in general, the chosen

modeling technique is appropriate for achieving the research goal. The output

of this step will be twofold: First, a set of concrete (inter-)actions plausible for

a learner to have executed within the gaming environment. Secondly, a set of

observable variables as a direct output of the interactions between the learner and

the game along with their domain.

Method selection
and model building

In a second step and in accordance with these scenarios, appropriate methods

from the field of cognitive modeling have to be systematically chosen. As stated

earlier, I will limit the set of choices to methods or approaches from the field of

cognitive architectures and the field of (hierarchical) Bayesian models. Having

selected a method, a cognitive user model of the learner has to be built and

trained. This model should allow the adaptive system to assess the learner’s current

1.2. Research Objectives and Intended Approach 8

cognitive state with respect to the scenario. Such an assessment could involve

affective variables (personality, emotions, or mood), readiness to learn (attention,

engagement, and motivation), comprehension, mental load, exhibited knowledge,

competence states or skills, incongruent behaviors, individual preferences, traits

or aptitudes, learning styles, and many more (Kickmeier-Rust and Albert, 20122012;

Sottilare and Gilbert, 20112011). It is not the goal of this thesis to model all of these

cognitive variables, but rather to select the ones that can be modeled up to a degree

that will allow for helping to answer the overall research question of when to adapt.

Model validation In a third step, the chosen cognitive user model will be applied to realistic data

of a concrete digital educational serious game for image evaluation to validate

the concept. Multiple models will be compared to each other to show the process

of model selection. The best model will be evaluated on different data sets to

demonstrate the model’s applicability to a versatile but plausible range of data

expected to be gained from learner interactions with the educational serious game.

The main goal of this thesis is to a) evaluate how methods from computational cognitive modeling

can be used to realize cognitive user models for digital serious games with a focus on image evaluation,

b) list the advantages and disadvantages of the different approaches, and c) in general, estimate their

practicality for real world applications. Besides the requirements for a general cognitive model, it is

also necessary to account for psychological variables associated with the domain of education like the

accomplishment of educational objectives and knowledge acquisition.

1.3 Project Environment

This master thesis was written in cooperation with the department Interoperability and Assistance Systems

(IAS)11 of the Fraunhofer Institute of Optronics, System Technologies, and Image Exploitation IOSB. The

IAS offers solutions for human interaction with complex information- and technology-based systems.

Their research focuses on computer-supported assistance systems, information management, cooperative

work, and decision-making processes. Their work focuses on stations for the analysis of aerial and satellite

images along with assistance systems, among others; topics that are directly related to this thesis.

Dipl.-Inf. Alexander Streicher, my advisor and second reviewer of this thesis, is the contact person

for two of the IAS research topics: intelligent tutoring interfaces for technology enhanced learning and

adaptive learning systems. The topic of this thesis is directly related to the second line of research.

The IAS has already developed solutions for the problem of sustainable learning and adaptive systems.

One of their products is the E-Learning Artificial Intelligence (ELAI) Framework (Streicher and Roller,

20172017), based on the four-process adaptive cycle for adaptive learning systems (Shute and Zapata-Rivera,

20122012). The core of ELAI is an intelligent tutoring controller that, by interpreting the collected learner user

data, adjusts the simulation or game accordingly to the learner’s needs. The ELAI Framework consists of

an ELAI game engine adapter, which has to be programmed for a particular game, and an externalized

ELAI Controller, which hosts the actual e-learning “intelligence” with an interpretation and an influence

1 https://www.iosb.fraunhofer.de/servlet/is/12696https://www.iosb.fraunhofer.de/servlet/is/12696

1.3. Project Environment 9

https://www.iosb.fraunhofer.de/servlet/is/12696

Figure 1.6.: The E-Learning Artificial Intelligence framework (from Streicher and Roller, 20172017, Fig. 1). The
framework consists of a game engine adapter, a communication layer based on HLA with xAPI
payloads, and an external intelligent tutoring agent. The agent interprets the user data with
the help of different models to suggest adaptations based on the available content.

engine. So far, the ELAI adapter has been realized for the Unity, Havok, and VBS3 game engines22. The

purpose of this thesis, the realization of intelligent, cognitive user models, is directly related to the

externalized ELAI Controller.

Multiple serious games were developed at the IAS: Seek and Find for Image Reconnaissance (SaFIR)

plus adaptivity (SaFIRa) (Streicher, Roller, and Biegemeier, 20172017), Exercise Trainer (EXTRA) (Streicher,

Szentes, et al., 20162016), and Lost Earth 230733. Lost Earth 2307 was developed to help in the training of

image interpreters and supports related learning objects like gaining basic knowledge in interpreting and

analyzing aerial and satellite imagery and understanding processes of the Reconnaissance-Cycle. Lost

Earth is currently ported from the Havoc game engine to the Unity game engine and an early version of

this port is used as the concrete digital serious game for this thesis.

1.4 Structure

The rest of this thesis is structured as follows: Chapter 22 Conceptual BackgroundConceptual Background (page 1212) provides

the reader with the theoretical background about computational cognitive models in cognitive science,

about the Experience API as a standard for describing and exchanging user interactions, and about

the Cognitive Load Theory, one example of a learner attribute that plays a central role in the realized

cognitive intelligent user model.

Chapter 33 Literature ReviewLiterature Review (page 5353) begins with the current state of the art of cognitive architec-

tures, and a short overview of current approaches to realize student models in Intelligent Tutoring Systems.

Next, different ways of model comparison and model selection for Bayesian models are presented. The

presented metrics are used in the implementation chapter to decide which of the built models to keep.

2 see https://www.iosb.fraunhofer.de/servlet/is/77629/https://www.iosb.fraunhofer.de/servlet/is/77629/
3 https://www.iosb.fraunhofer.de/servlet/is/58015/https://www.iosb.fraunhofer.de/servlet/is/58015/

1.4. Structure 10

https://www.iosb.fraunhofer.de/servlet/is/77629/
https://www.iosb.fraunhofer.de/servlet/is/58015/

The end of this chapter deals with how to measure cognitive load according to the Cognitive Load Theory,

which is important to verify the model’s external validation.

In the previous section Research Objectives and Intended ApproachResearch Objectives and Intended Approach I listed three concrete steps

to find answers to the research questions. Chapter 44 ConceptConcept (page 6969) deals with the first step,

chapter 55 ImplementationImplementation (page 103103) with the third step, while the second step is divided among the

two chapters because model building requires both a concept as well as an implementation. Chapter 44

begins with a description of possible interactions between the learner and the cognitive user model. After

that follows a description of possible interaction patterns for the serious game Lost Earth along with a

description of observable variables that can be gained from the interactions between a user and the game

and that serve as the input for the cognitive user model. The last section covers the concepts to realize

cognitive user models with both of the approaches cognitive architectures and Bayesian models.

The actual implementation is covered in the chapter 55. I describe the library PyMC3 that allows

for probabilistic computations and the developed Python package CogIUM to build, train, and evaluate

cognitive user models. The main contribution of this chapter is section 5.35.3 ValidationValidation (page 115115), in

which I validate different cognitive user models, give an example of how to extend the model to additional

observations and validate the final model on different data sets. I also discuss the findings regarding the

model comparison process. The remainder of this chapter is used to discuss how the model can be further

extended.

The second last chapter 66 Application ExampleApplication Example (page 146146) gives a short example of how to use the

CogIUM Python package, what the output of the model looks like and how to interpret the results.

The thesis concludes with chapter 77 Conclusion and RecommendationsConclusion and Recommendations (page 152152), which gives a

summary of the work along with the main contributions, states open research questions, and lists possible

links to future work.

1.4. Structure 11

2 Conceptual Background
This chapter lays the theoretical foundations for all concepts and methods used in this thesis. First,

the main concepts of the field of computational cognitive modeling are presented with a focus on

cognitive architectures and hierarchical Bayesian models. The sections provide an answer to the question

how user behavior can be modeled and understood. Next, a standard for capturing user data is presented:

the Experience API. The final section presents a cognitive theory that helps to understand how different

learning material can influence a learner’s performance: the Cognitive Load Theory.

2.1 How to Model User Behavior – Paradigms in Cognitive Science

Cognitive science is the interdisciplinary study of the human mind, combining the perspective of many

different fields such as philosophy, psychology, artificial intelligence, robotics, neuroscience, linguistics,

and anthropology (Friedenberg and Silverman, 20062006; Thagard, 20052005). Cognitive science wants to explain

the various kinds of human thinking with a focus on methods and strategies the mind utilizes to solve the

huge variety of problems that humans have to face from day to day. Most cognitive scientists agree to the

idea that knowledge in the mind consists of mental representations in the form of rules, concepts, images,

and analogies. In addition, cognitive science states that people have mental procedures that operate on

these mental representations to produce thought and action. Thagard (20052005) calls this central hypothesis

the Computational-Representational Understanding of Mind (CRUM). Although CRUM might be wrong

and the “mind as computer” metaphor (Table 2.12.1) has fallen into disfavor (Chown, 20042004, p. 2), this

analogy of the mind as an information processor that manipulates mental representations with the help of

computational procedures, like a computer manipulates data structures with the help of algorithms, has

been the “most theoretically and experimentally successful approach to mind ever developed” (Thagard,

20052005, p. 11).

Computational cognitive modeling “embodies descriptions of cognition in algorithms and programs”

and thus “provides detailed descriptions of mechanisms (i.e., static aspects) and processes (i.e., dynamic

aspects) of cognition.” (Sun, 20092009, p. 125). Sun notices that computational models can match actual

human data in a variety of ways and thus can be validated differently. First, such models can be

broad or narrow with respect to the covered behavioral data, precise or imprecise, and descriptive or

normative. Furthermore, he states three types of correspondences between computational models and

human behavior in an increasing order of precision. In the behavioral outcome modeling, a computational

model yields nearly the same types of behaviors as humans do, given the same circumstances. In

Table 2.1.: The “mind as a computer” metaphor (based on Thagard, 20052005, p. 11).

Entity Requirements Output

Program data structures + algorithms → running programs
Mind mental representations + computational procedures → thinking

12

qualitative modeling, the computational model can produce the same qualitative behaviors resembling

human performance. In quantitative modeling, the computational model’s performance is no longer only

close to human performance but manages to produce exactly the same quantitative behaviors that were

observed in humans as indicated by some qualitative performance measure. (Sun, 20092009)

Besides its focus on computational modeling, the primary method of cognitive psychology is experi-

mentation with human participants. The experiment is the ultimate test of any theory (Chown, 20042004). To

be able to answer questions about the nature of the mind, the findings of a psychological experiment need

to be interpretable within a theoretical framework that posits mental representations and procedures.

To develop these theoretical frameworks, building and testing computational models intended to be

analogous to mental operations is one of the most promising ways (Thagard, 20052005). Therefore, a typical

paper in a cognitive science conference proceeding will entail the presentation of the findings of a single

experiment or a set of psychological experiments on some area of cognition, a model to account for the

data, and computer simulations of the model (Chown, 20042004).

McClelland (20092009, p. 16) argues that the “essential purpose of cognitive modeling is to allow

investigation of the implications of ideas, beyond the limits of human thinking.” Any discovery made by

or gained through such a model is based on what McClelland calls a particular set of specified properties

to avoid the word assumptions. Assumptions give rise to consequences and based on observations of

this type researchers attempt to draw implications for the nature of human cognition. Because cognitive

science’s main focus is to capture the essence of human cognitive abilities, it is important to consider both

the sufficiency of a model as well as its ability to explain experimental data. When assessing the adequacy

and appropriateness of a model, McClelland (20092009, p. 21) suggests posing the following question: “Does

a model carry out some task as well as humans do, and does it achieve optimality to the same degree and

deviate from optimality in the same way as humans?”.

Before we come to a description of two of the main paradigms in the field of cognitive science, I

want to take a closer look at the term model. A computational model makes the structures and processes

postulated by a cognitive theory more precise by interpreting them by analogy with computer programs.

Vague representations must be specified by computational ideas about data structures as well as mental

processes must be defined algorithmically (Thagard, 20052005). A good model of cognition is both predictive

and prescriptive. The first describes the model’s ability to describe people’s likely behavior in different

scenarios. The second describes the model’s limitations in cognition and possible ways to overcome these

limitations (Chown, 20042004). Again, the ultimate measure of the model’s value is the model’s ability to

make accurate predictions. However, the fact that a model is consistent with a particular body of facts

does not mean that the model is correct, or that the properties it embodies resemble the system it is

intended to model. The only thing that can be said is that this set of ideas cannot be ruled out (McClelland,

20092009). On the other side, the claim that a modeler has a “virtually infinite toolkit of things to play with in

fitting a model to data” (McClelland, 20092009, p. 23) is simply not the case, and arbitrarily changing the

model’s parameter will not ensure that a given model can be fit to any body of data. Instead, real progress

actually can and does occur because achieving a good fit to a complex body of data is not at trivial task

and its success is not assured (Sun, 20092009).

When comparing different information processes, it may be helpful to describe them at different

levels. The tri-level hypothesis postulates three different levels to evaluate mental or artificial information

2.1. How to Model User Behavior – Paradigms in Cognitive Science 13

Figure 2.1.: Three main categories of modeling approaches in cognitive neuroscience (from Turner et al.,
20172017, p. 67). N represents the neural data, B represents the behavioral data, N ∗ represents
simulated internal model states, and θ ,δ, and Ω represent model parameters. The authors
count the cognitive architecture ACT-R to the simultaneous modeling approaches.

processing events (Marr, 19821982). The first and most abstract level of analysis is the computational level.

This level is concerned with the two tasks of specifying the goal of computation and the problem it

attempts to solve as well as the purpose or reason for the process. The second, more narrowed down level

of analysis is the algorithmic or programming level. This level is concerned with formal procedures that act

on informational representations and attempt to answer the question what information processing steps

are being used to solve the problem. The third and most specific level of analysis is the implementation or

hardware level. This level is concerned with the physical realization of the information processor and its

constituting parts. (Friedenberg and Silverman, 20062006)

Another common distinction between computational models is the distinction between understanding

computation from a symbolic or a connectionist perspective. First the symbolic perspective. A formal

symbol manipulator is syntactic or rule-governed and operates on representations that are independent

of the content of those representations. The manipulations are physically and take some time to occur.

Knowledge is localized in the form of symbols. In the connectionist view, instead, knowledge is represented

as a pattern of activation or weight distributed throughout a network, and processing happens not in

discrete stages but rather in parallel (Friedenberg and Silverman, 20062006). As we will see in the next section

General artificial intelligence – cognitive architecturesGeneral artificial intelligence – cognitive architectures, the boundaries between these different categories

are not as absolute as they may appear and modern systems incorporate ideas from both domains (Chown,

20042004; Kotseruba and Tsotsos, 20182018).

2.1. How to Model User Behavior – Paradigms in Cognitive Science 14

Because cognitive science aims for understanding and explaining the human mind, patterns of

neural activity from studies in cognitive neuroscience has to be considered along with behavioral data

from cognitive experiments. Neuroscience can help to better understand and improve models due to a

additional source of constraints and information regarding information flow, modularity, mechanisms,

and timing (Chown, 20042004). Often enough, both groups of mathematical psychologists and cognitive

neuroscientists keep within their restricted tight single-level focus, thinking in terms of Marr’s (19821982)

level of analysis, and opportunities from combining both approaches are missed (Turner et al., 20172017).

Turner et al. have analyzed several approaches in cognitive neuroscience according to how they model

the link between neural and behavioral data (Figure 2.12.1 on the previous page). They argue for at least

three general categories of approaches. In the first category, neural data constrains the behavioral model.

In the second category, the reverse can be found, and a behavioral model predicts neural data. The third

category comprises approaches which build a single model that jointly accounts for both neural and

behavioral data, that is simultaneous modeling. Cognitive architectures like ACT-R (Anderson, 20072007) that

aim for an integrative approach, can be put in the third category as they integrate neural and behavioral

measures which allows the ACT-R model to be used in both exploratory and confirmatory research (Turner

et al., 20172017). The Bayesian modeling approach is much richer in the ways it can be applied, but Turner

et al. (20172017) list a concrete example of a hierarchical Bayesian model used in a joint modeling framework

to build the connection between neural and behavioral measures. Although integrative models might be

the most desirable way to go, it is naturally the most difficult one with the most constraints to be met.

An in-depth description about the different cognitive modeling paradigms can be found in Sun

(20082008) and commentaries to the different frameworks in McClelland (20092009). The covered paradigms are

connectionist models, Bayesian models, dynamical systems approaches, declarative/logic-based models,

and cognitive architectures. In this thesis I try to answer the research questions using two concrete models

from the aforementioned paradigms: Soar, a cognitive architecture, and hierarchical Bayesian models.

The following two sections will introduce the main ideas behind these two paradigms.

2.1.1 General artificial intelligence – cognitive architectures

Simon (19571957) once declared that “AI can have two purposes. One is to use the power of computers to

augment human thinking. The other is to use a computer’s artificial intelligence to understand how

humans think.”

The term cognitive architecture was first coined by Allen Newell and his colleagues in their work on

unified theories of cognition (Newell, 19941994). Historically, the aim of cognitive architectures was threefold:

to capture the basic mechanisms of human cognition (e.g., reasoning, control, learning, memory, attention,

adaptivity, perception, and action), to form the basis for the development of “cognitive capabilities through

the ontogeny over extended periods of time”, and to achieve human level intelligence, which is also

called General Artificial Intelligence (Lieto, Bhatt, et al., 20182018, p. 1). All cognitive architectures have the

common goal of creating unified theories of cognition.

Sun (20072007, p. 2) defines a cognitive architecture as follows:

2.1. How to Model User Behavior – Paradigms in Cognitive Science 15

“A cognitive architecture is a broadly-scoped, domain-generic computational cognitive model,

capturing the essential structure and process of the mind, to be used for a broad, multiple-level,

multiple-domain analysis of behavior.”

Cognitive architectures focus on the constant and task-independent aspects of cognition (Vernon,

Metta, et al., 20072007). Cognitive architectures aim for a broad and cross-domain analysis of cognition

by providing a framework that is used to model cognitive phenomena. As a framework a cognitive

architecture specifies essential structures, the division of modules, the relations among models, and

other important aspects. By choosing a cognitive architecture, the modeler agrees to the embodied

fundamental theoretical assumptions of the framework and limits themself to only those models that

are possible to realize within the framework. It is important to understand that cognitive architectures

“cannot accomplish anything in their own right” (Vernon, Metta, et al., 20072007, p. 162). Only when the

cognitive architecture is combined with particular knowledge to form a cognitive model, actual intelligent

behavior can emerge. In most cognitive systems human designers are responsible for determining the

knowledge that should be incorporated into the cognitivist system.

The early scientific vision of the ‘cognitivist’ approach to Artificial Intelligence (AI) aimed at “un-

derstanding and reproducing, in computational systems, the full range of intelligent behavior that we

observe in humans” (Langley, 20122012, p. 3). Besides the ongoing effort, artificial systems with human-like

and human-level intelligence are still out of reach (Lieto and Radicioni, 20162016). In general, when it comes

to the explanatory role we attribute to artificial models and systems, we can differentiate between the

methodological approach of functionalism and the ‘structural’ approach. The former postulates a weak

equivalence between cognitive processes and AI procedures. Thus, comparisons between the ‘natural

mind’ and ‘artificial software’ are restricted to macroscopic equivalence of the functional organization

of the two systems. The latter sees an epistemological need of artificial models whose ‘functions’ are

implemented in such a way that they resemble the biological and cognitive ‘structures’ and ‘constraints’ of

human cognition. A detailed comparison of the cognitivist and emergent paradigms of cognition can be

found in Vernon, Metta, et al. (20072007). Only when the artificial system can be considered a good ‘proxy’ of

a target cognitive system it can play an explanatory role about it and help to gain results useful in “refining

or rethinking theoretical aspects concerning the target biological system used as source of inspiration”

(Lieto and Radicioni, 20162016, p. 2).

Despite the differences between these perspectives, both the cognitivist and the emergent perspective

are compliant with the structural approach and the design of a cognitive architecture is usually driven

by a set of general desirable desiderata (Lieto and Radicioni, 20162016; Sun, 20042004; Vernon, Hofsten, et al.,

20162016). The role of the desiderata is to ensure a cognitive architecture’s capacity for development that

is “driven by both exploratory and social motives” (Vernon, Hofsten, et al., 20162016, p. 120). Desiderata

are also important to characterize and classify cognitive architectures as psychologically oriented (Hélie

and Sun, 20142014). Instead of focusing on narrow domains, as ‘expert systems’ do, psychologically oriented

cognitive architectures aim to capture human level performance in a wide variety of domains. This is

possible because the cognitive architecture includes only minimal initial structures and independently

learns from its own experiences. Hélie and Sun (20142014) list five essential desiderata to model autonomous

learning in a psychologically-realistic way. Sun (20072007) states three reasons for the importance of

psychologically oriented cognitive architectures: they help advancing the understanding of human

2.1. How to Model User Behavior – Paradigms in Cognitive Science 16

cognition, they serve as a foundation for understanding human behavior, and they are ‘intelligent’ systems

that are cognitively realistic and more human-like.

Sun (20072007) names four different levels of analysis that range from most macroscopic to the most

microscopic: the sociological level, the psychological level, the componential level, and the physiological

level. A cognitive architecture can play a role as a ‘centerpiece’, combining and aligning different strands

of research. On one hand, detailed mechanisms are developed within a cognitive architecture, probably

tied to low-level cognitive processes. On the other hand, the cognitive architecture as a whole may provide

very high level cognitive abilities.

The literature differentiates between three major classes of cognitive architectures: cognitivist,

connectionist, and hybrid (Gudivada, 20162016; Kotseruba and Tsotsos, 20182018). Cognitivist architectures

use explicit symbolic representations to represent information. Cognitivist architectures are also called

symbolic architectures and artificial intelligence approaches. Despite being quite successful, they lack

generality to be useful across domains (Gudivada, 20162016). In connectionist architectures information is

processed by simple, connected computational units, which communicate in parallel. The units in the

network receive stimuli through their incoming connections, perform some non-linear computation on

it, and affect other neurons through their outgoing connections. Connectionist architectures are also

called emergent architectures. Finally, hybrid cognitive architectures use a combination of symbolic and

emergent architectures for their components.

Newell and Simon (19761976) formulated two hypotheses that help with better understanding cognitivist

architectures

1. The Physical Symbol System Hypothesis: A physical symbol system has the necessary and sufficient

means for general intelligent actions.

2. Heuristic Search Hypothesis: The solutions to problems are represented as symbol structures. A

physical-symbol system exercises its intelligence in problem-solving by search, that is, by generating

and progressively modifying symbol structures until it produces a solution structure.

Because a symbol system in the sense of Newell and Simon comprises two recursive loops in which

processes can produce processes and patterns can designate patterns (Figure 2.22.2 on the following page),

the system is able to build “ever more abstract representations and reason about those representations” as

well as modify itself as a function both of its processing and of its representations (Vernon, Metta, et al.,

20072007, p. 155).

he information presented up to this point should suffice to grasp a general understanding of what

cognitive architecture try to achieve, how they are related to cognitive models, and how they can be

characterized. More information about the current state of the art of cognitive architectures can be

found in the related section 3.1.13.1.1 Cognitive architecturesCognitive architectures (page 5353) of the chapter Literature ReviewLiterature Review. As

a concrete cognitive architecture to realize CogIUMs Soar was chosen. Soar and ACT-R are two of the

most popular, longest actively developed and best supported cognitive architecture. I decided to use Soar

because it seemed easier to start with and to get productive. The next section will have a closer look on

Soar, its structure, evolution, and latest development.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 17

Figure 2.2.: The main components and processes of a physical symbolic system (from Vernon, Metta, et al.,
20072007, p. 154).

The Soar cognitive architecture

Soar is one of the oldest and most successful cognitive architectures and was developed by Laird, Newell,

et al. (19871987). The architecture existed since the mid 1982 and started as a classical symbolic manipulation

system: Soar uses an explicit symbolic representation of its tasks, which in return are manipulated by

symbolic processes. Knowledge is encoded in symbolic structures and guides the system’s behavior. The

system’s behavior is further controlled by a general scheme of goals and sub goals that represent what the

system wants to achieve at any given state in time. The development of Soar is guided by the search for a

minimal set of mechanisms that are sufficient to realize the complete range of intelligent human behavior.

Although Soar is often categorized as a typical member of the cognitivist architectures, other authors put

Soar in the hybrid category as it combines symbolic concepts and rules with sub-symbolic elements such

as activation values, spreading activation, and reinforcement learning (Gudivada, 20162016; Kotseruba and

Tsotsos, 20182018).

Soar distances itself from other architectures by embodying mechanisms and organizational principles

that express hypotheses about the nature of the architecture for intelligence. I will shortly summarize

these characteristics because they help in gaining a clear picture of the distinctive features of Soar, and

in understanding how Soar operates and what possible outcomes of the architecture might look alike.

The order of the characteristics along with their descriptions is in accordance with (Laird, Newell, et al.,

19871987). Lehman et al. (19981998) list another but very similar six characteristics of what Soar posits about any

human cognitive behavior.

Problem Space
Hypothesis

Every task in Soar is formulated as finding a desired state in a problem space.

Operators are procedures that, when applied to a current state, yield a new state.

Without episodic memory, which was only recently implemented in Soar, there is

no knowledge about any states of the problem space but the current one, and Soar

can generate new states only by applying appropriate operators to the current state.

Similarly, Soar does not know about other possible or valid states in the problem

state because they do not pre-exist as data structures but have to be generated by

applying operators to existing states.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 18

Universal
subgoaling

Any decision in Soar can be related to searching a problem space. If the available

knowledge is sufficient, Soar can advance in choosing an operator and applying it

to the current state. However, if the current knowledge is insufficient (e.g., which

operator to choose, how to perform the chosen operator, how to evaluate the result),

Soar creates a subgoal with the aim to deduce the missing knowledge. This can

be done for any problematic decision and is called “universal subgoaling”. This

behavior is recursive so that Soar involves a tree of subgoals and problem spaces.

Long-term
knowledge is
represented as a
production system

The uniform production system delivers control knowledge, as when to propose

appropriate operators, how to decide between proposed operators or when to reject

proposed operators, and procedural knowledge. The actual data structures are held

in the system’s short-term working memory and the long-term storage in form of

productions lead to actions that manipulate or generate the data structures. All

satisfied productions (i.e., the conditions of the production meet the current state)

are fired in parallel.

Fixed
decision procedure

A fixed decision procedure determines the next action based on preferences. Pref-

erences are one type of data element that represents knowledge about which

operators are suitable for Soar in the current situation. Preferences are limited to

a build-in set of concepts: acceptability, rejection, better (best, worse, and worst),

and indifferent.

Automatic
subgoaling

Insufficient knowledge leads to impasses which in return create goals to be over-

come. Whenever Soar cannot continue with problem solving due to insufficient

knowledge, an impasse is reached. The architecture detects impasses due to an

inability of the fixed decision procedure to conclude the next action. This is when

the architecture creates a new sub goal under the current goal to overcome the

impasse of a failed decision procedure. Goals are only created in response to an

impasse. The build-in four different impasse types are enough to create all types of

sub goals.

Continuous
monitoring of
(sub)goal
termination

Soar continuously monitors for the termination of all active goals in the goal

hierarchy (see previous point). Whenever a goal is terminated, Soar proceeds

immediately from the point of termination. As all goals besides the goals on the first

level were created as subgoals to overcome impasses, this means that the decision

at the higher level will be made immediately. All working memory elements that

were created in the process of overcoming an impasse and thus belong to the state

of the terminated goal are automatically removed.

Basic
problem-solving
methods are a
side-product

So-called weak methods, such as hill climbing, means-end analysis, etc., are not

directly implemented in Soar but are realized by adding search-control productions

to the production system that express knowledge about the task. Soar will conduct

in a manner that is similar to these weak methods if it has the knowledge to do so.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 19

Figure 2.3.: Eleven basic hypotheses about the structure of an architecture for general intelligence (from
Laird, Newell, et al., 19871987, p. 57). The first two are almost universally accepted among
researchers of AI systems of any scope. On the contrary, the weak-method emergence
hypothesis is unique to Soar.

Learning through
chunking

Chunking is a learning mechanism that learns continuously by automatically and

permanently caching the results of problem solving to overcome impasses (see

automatic subgoaling). The created production is added to the long-term memory

and fires in similar situations, making the result of the previous problem solving

directly available to overcome the impasse without the need for solving the same

problem twice. This learning mechanism is related to the phenomenon called

chunking in human cognition. Soar learns both operator implementations and

search control by fine-grained task decomposition and the ability to abstract away

all but the relevant features of problem solving.

The authors of Soar admit that there are most certainly more and other properties underlying human

cognitive capabilities, and other ways to interpret the same behavior. However, as an architecture that

reflects this particular view, Soar allows to easily implement this view. Therefore, after constructing a

model within the architecture, it will be easy to describe the model’s behavior as goal-oriented because

the architecture supports that view directly (Lehman et al., 19981998). Lehman et al. remind us that the

architecture alone is not enough to elicit behavior because behavior is a function of both the architecture

and content.

Taking all the previous points into consideration, it is of little surprise that the inventors or Soar

call it a “problem-solving architecture”, because Soar accomplishes all of its tasks in problem space. To

implement any task as search in a problem space requires a set of “task-implementation functions” that

realize the retrieval or generation of the problem space, operates for this problem-space, an initial state

representing the start situation, and new states as a direct result of operators applied to existing states.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 20

Besides the task-implementation functions, the architecture needs ‘search-control functions’, which allow

the selection of a problem space, a state from available states, and an operator to apply to the state.

Together, task-implementation and search-control functions are all that is needed to realize problem-space

search. (Laird, Newell, et al., 19871987) Soar takes most, if not all, of the eleven hypothesis it embodies

to the limit: All tasks in Soar are represented in the problem-space, all learning is based on goal-based

chunking11, and all long-term memory is a production system (Figure 2.42.4 on the next page).

As mentioned earlier, Soar has not stopped there but instead has evolved into an architecture that

now uses several memory modules, additional learning strategies and new non-symbolic representations

of knowledge (Figure 2.52.5 on the following page). However, the core processing cycle is still driven by

procedural knowledge implemented as production rules. Nevertheless, with the newest extension of Soar,

Laird (20122012) had to admit that it was necessary to “departure from some of the original hypotheses”. It

holds no longer true, that rules are sufficient to represent all long-term knowledge, that a single learning

mechanism is sufficient for all learning and that symbolic representations are sufficient for all short-term

and long-term knowledge. Instead, Soar 9 supports multiple long-term memory systems (procedural,

episodic, and semantic), multiple learning mechanisms (chunking, reinforcement learning, semantic, and

episodic learning), and multiple representations of knowledge (symbolic, numeric, and imagery-based

representations) (Laird, 20122012). A more in depth description of the latest version of Soar along with

examples of ow a cognitive architecture should be described and evaluated can be found in Laird’s book

(Laird, 20122012).

Because Soar 9 can be seen as a truly hybrid architecture with non-symbolic components, I will

briefly summarize these new components to help the reader understand their implications and possible

contributions (Figure 2.52.5 on the next page)).

Up until Soar 9, all operator preferences were symbolic, and no possibility existed to repent en-

vironmental reward. That changed with Soar 9 and the introduction of reinforcement learning for

numeric preferences. Now it is possible to specify numeric preferences. For operator selection all numeric

preferences are combined, and a Boltzmann distribution-based algorithm is used to select the next

operator. After an operator applies, reinforcement learning lead to an update of all rules that created

numeric preferences for that operator based on any new reward and the expected future reward. Such,

reinforcement learning allows Soar agents to “improve their decision making over time as it receives

feedback from the environment” (Laird, 20122012).

Very similar to ACT-R, Soar 9 now supports encoding knowledge directly as semantic knowledge,

which represents facts about the word. Knowledge in semantic memory cannot be accessed directly,

though, but has to be retrieved via creating cues in working memory in a special buffer. Based on this

cue and a so-called base-level activation, which favors results that are more recently and/or frequently

accessed over less activated memory chunks, the best match in semantic memory is found and retrieved

into working memory. With semantic memory, a Soar agent is now able to build up declarative knowledge

over time.

Analogously to semantic memory, Soar 9 also introduces episodic memory, which is a storage for

memories of what was experiences over time. Episodic memory is task-independent and thus available for

every problem. It encodes instances of the structures that occur in working memory at the same time, so

1 This is not true for the latest version of Soar, but we will come to this in a minute.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 21

Figure 2.4.: Structure of the original classic Soar (from Laird, 20122012, p. 1). Soar originally consisted of
a single long-term memory, which is encoded as production rules, and a single short-term
memory, which is encoded as a symbolic graph structure. The symbolic working memory holds
the agent’s knowledge of the current situation, derived from perception, and the knowledge
retrieved from its long-term memory. The decision procedure selects appropriate operators
based on the knowledge of the task, or detects impasses when knowledge is insufficient.
Working memory can only be changed by the application of operators. Chunking is Soar’s
learning mechanism that converts the results of problem solving in subgoals into rules.

Figure 2.5.: Structure of Soar 9 (from Laird, 20122012, p. 2). In its latest version, Soar was extended significantly.
Next to the classical procedural long-term memory, Soar 9 supports semantic, episodic and
perceptual long-term memory. Chunking as the traditional single learning mechanism is
complemented by semantic learning, episodic learning and reinforcement learning. Finally,
Soar 9 now incorporates emotions, appraisals and feelings to guide reinforcement learning.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 22

that it is possible to remember the context of past experiences as well as temporal relationships. Like with

semantic memory, episodic memory is not accessed directly, but again via creating cues, which are in this

case partial specification of working memory. Based on this cue, the best match in episodic memory is

found and the contents of the working memory of this episode is restored in a separate working memory

buffer. Episodic memory gives a Soar agent “advanced cognitive capabilities such as virtual sensing,

internal simulation, and prediction, learning action models, and retrospective reasoning and learning.”

(Laird, 20122012)

All the previous mentioned extensions depend on the existing symbolic short-term working memory

that encodes the agent’s understanding of the current world situation. However, symbolic representations

are not suited for all kind of data and processing tasks, like visual-spatial reasoning. The natural way of

handle visual-spatial reasoning is by processing visual imagery, the very reason why Soar 9 was extended

by a short-term memory especially for constructing and manipulating images, as well as a long-term

memory that contains images that can be retrieved into the short-term memory. There is of course still

a connection to the symbolic system, which controls visual imagery by issuing commands to construct,

manipulate, and examine visual images. With visual imagery a Soar agent is now able to not only solve

spatial reasoning problems “orders of magnitude faster”, but also to process information not possible with

only symbolic reasoning (Laird, 20122012).

Finally, Soar 9 now includes a computational implementation of a specific appraisal theory to support

emotions that arise due to an continuous evaluation of a situation. This evaluation is theorized to happen

along multiple dimensions, such as goal relevance, goal conduciveness, causality, control, etc.. The

appraisal detector in Soar 9 registers the outcome of these evaluations in form of emotions, which in

return influence mood. Both mood and emotions determine feelings. Individual appraisals produce either

categorical or numerical values for the current feeling and this intensity becomes the intrinsic reward for

reinforcement learning. Thus, emotions are implemented as a form of intrinsic motivation via rewards or

penalties for reinforcement learning. (Laird, 20122012)

Lehman et al. (19981998, pp. 31–32) have nicely summarized the principle work flow with Soar:

“First, we specify the domain knowledge Joe needs; that’s our content. Next, we tie the

different types of domain knowledge to the different parts of the goal context: goals, problem

spaces, state structures (including percepts and any other working memory elements that

trigger actions), and operators. Finally, we specify the relationships between problem spaces by

the impasses that will arise and the kinds of knowledge that will be missing, and consequently

learned”.

A synopsis of the mechanisms and structures of the classical Soar architecture, previous to Soar 9,

entails the goal context as central organizing element, the working memory and long-term memory as the

two main knowledge representations, the perception/motor interface to interact with the external world,

the decision cycle with a single selected operator that leads from the current state to a new state, the

impasses as signals of lack of knowledge, which provide an opportunity for learning, and four learning

mechanisms: chunking, reinforcement learning, episodic learning, and semantic learning. (Lehman et al.,

20062006).

Before we leave this section and the introduction to Soar, I want to give the reader some more

information about the internals of Soar to foster an intuition about how Soar works.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 23

Figure 2.6.: Problem solving represented as movement through a problem space (from Lehman et al.,
20062006, p. 10). The problem space is widening over time to represent the “ever-expanding set
of possibilities” that unfold over time. Squares represent states. Goal states are shaded and
indicate the state the system tries to achieve. Each state is characterized by features (bold
face) and their corresponding values (italic face). Arrows represent operators that are the only
way to transform a current state into a new state. All variables are indicated with arbitrary
symbols.

First, we have a closer look at the problem space (Figure 2.62.6). The problem space is made of states

(squares) which represent possible isolated instances of the problem in the real world. A state is described

by attributes or features (in bold face) and their possible values (in italics). The values are not limited

to atomic values but instead can be themselves a set of features and values, allowing the representation

of richly interconnected sets of objects. We will come to this later. A state is a representation of all the

aspects of a situation, internal and external, that the agent may need to consider choosing its next action.

Each model of a particular behavior must include a description of the initial situation, which translates to

an initial state (S0) in the problem space. Likewise, there has to be a description of desired goal states

(shaded squares) with features and values that indicate that the goal has been achieved. Given the initial

and goal states, an agent tries to find a path through the problem space that allows him to travel from

the initial state to a goal state via operators (arrows). As was said earlier, at every point in time, there is

only a single state designated as the current state which represents the current situation of the agent and

the world. Movement from the current state to a new state is only possible through the application of

an operator to the current state. The application of an operator to the current state transforms the state

by changing some of its features and values. To avoid a random, unguided movement through problem

space, the agent has to be guided by the principle of rationality: if the agent has knowledge about the

preferences of operators in a given situation it will select the operator from which it knows that it will

lead to one of its desired goals. (Lehman et al., 20062006)

2.1. How to Model User Behavior – Paradigms in Cognitive Science 24

Figure 2.7.: Working memory as a semantic net (from Laird, Congdon, et al., 20172017, p. 47). Each working
memory element is defined by at least one identifier-attribute-value triple.

All knowledge about the current situation is held in Soars working memory (Figure 2.72.7). This

comprises the current state with all known objects and elements as well as operators. The working memory

is organized in working memory elements. Each WME represents exactly one piece of information about

an object, like <B1> <is a> <block>, or <B1> <is named> <A>. All WMEs are represented by an identifier-

attribute-value triple. The identifier tells Soar to which internal object the WME belongs to. Several

WMEs can specify information about the same object by sharing the same identifier. Each WME describes

a different attribute of the object, for example, its name or type or location. In return, each attribute has

a value associated with it, which can be atomic or another WME triple. In the latter case, objects are

linked to other objects and relations between objects are formulated, such as <T1> <is ontop of> <F1>.

The working memory in Soar is implemented as a set, which means that there can never be two WMEs

at the same time that have the same identifier-attribute-value triple. However, multi-valued attributes

are supported. How are WMEs created? Most WMEs are created through the actions of productions (as

specified by the production rule’s right hand side) and through the environment by the input-link for

sensory data. Working memory is not only a set, but it is also a graph structure where identifiers are

nodes, attributes are links, and constants are terminal nodes (Figure 2.72.7). The objects in working memory

illustrated by Figure 2.72.7 are given by the following Soar syntax

(O43 ^isa apple ^color red ^inside O53 ^size small ^X44 200)

(O87 ^isa ball ^color red ^inside O53 ^size big)

(O53 ^isa box ^size large ^color orange ^contains O43 O87)

(X44 ^unit grams ^property mass)

The second important memory type in Soar is the long-term memory that holds procedural knowledge

in the form of productions. Procedural knowledge specifies how to respond to different situations in

working memory. Because Soar is a rule-based system, productions are formulated as rules. A rule has

2.1. How to Model User Behavior – Paradigms in Cognitive Science 25

a set of conditions and a set of actions. If the conditions of a production rule are satisfied by WMEs

of the current working memory, the production fires, and the actions are performed. The first part of

a production rule is often called the left hand side, whereas the second part of a production rule is

referred to as right hand side. In its simplest form, a production can test for the presence or absence of

objects in working memory. Of course, there are much more sophisticated possibilities for formulating

production rules, which will work with variables instead of hardcoded attribute values to match a wider

range of situations. The procedural knowledge found in Soar can be categorized into four distinct types

of knowledge: inference rules, operator proposal knowledge, operator selection knowledge, and operator

application rules. (Laird, Congdon, et al., 20172017)

As we have seen, Soar is based on the hypothesis that all deliberate behavior can be described as

goal-oriented. This is implemented in Soar as the selection and application of operators to a state. A

state represents the current situation; an operator specifies how a state can be transformed; and a goal

is a description of a desired outcome of the problem-solving activity. At a very abstract level, the Soar

program can be seen as a sequence of operator selections and operator applications to the current state,

until a goal state has been reached. On a finer-grained scale, the Soar program proceed through a number

of decision cycles, each consisting of five phases (Figure 2.82.8 on the following page):

Input Sensory data is processed, and the results come into the working memory.

Proposal All matching productions fire in parallel to elaborate the current state, propose operators

for the current situation, and compare proposed operators.

Decision Either a new operator is selected, or an impasse is detected which results in the creation

of a new state.

Application Only the productions that describe operator application fire in parallel to apply the

selected operator.

Output If applicable, output commands are sent to the external environment.

The proposal and application phase are not monolithic but entail as many elaboration cycles as

necessary to reach quiescence, which is the case when the set of matching rules remains unchanged. In

each elaboration cycle, working memory is changed by the actions of all matching productions. If the

actions of the fired productions led to changes in working memory that now satisfy the conditions of

further productions, a new elaboration cycle will begin. Interestingly, the limitation to a single operator

application per decision cycle imposes a cognitive bottleneck in the architecture (Lehman et al., 19981998).

With this information it is possible to state a simplified version of the Soar algorithm (Listing 2.12.1 on

page 2828, from Laird, Congdon, et al. (20172017, p. 27)).

2.1. How to Model User Behavior – Paradigms in Cognitive Science 26

Figure 2.8.: Soar’s decision cycle in detail (from Laird, Congdon, et al., 20172017, p. 26). Each decision cycle
consists of the two phases elaboration and decision. In the elaboration phase matching
production rules fire in parallel until quiesence is reached. In the decision phase all operator
preferences are evaluated and the best operator is selected. If a decision cannot be made due
to a lack of knowledge, an impasse is created.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 27

Listing 2.1: A simplified version of the Soar algorithm.
Soar

while (HALT not true) Cycle;

Cycle

InputPhase;

ProposalPhase;

DecisionPhase;

ApplicationPhase;

OutputPhase;

ProposalPhase

while (some i-supported productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

DecisionPhase

for (each state in the stack,

starting with the top-level state)

until (a new decision is reached)

EvaluateOperatorPreferences; /* for the state being considered */

if (one operator preferred after preference evaluation)

SelectNewOperator;

else /* could be no operator available or */

CreateNewSubstate; /* unable to decide between more than one */

ApplicationPhase

while (some productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

2.1. How to Model User Behavior – Paradigms in Cognitive Science 28

2.1.2 Handle uncertainty – Bayesian modeling

As we have established in section 2.12.1 How to Model User Behavior – Paradigms in Cognitive ScienceHow to Model User Behavior – Paradigms in Cognitive Science

(page 1212), cognitive scientists view the brain as an information processor. Central to this view is

the idea that new information is inferred from information that has been derived from the senses, like

linguistic or visual input, or from memory. But the process of inference from old to new is typically

uncertain with multiple sources of uncertainty: we have to estimate the quality of our sensory input,

the importance of different sensory sources, the trustworthiness of different knowledge sources, the

relevance of prior experiences and so on. Most of cognition and learning requires uncertain conjecture

from partial or noisy information (Griffiths et al., 20102010). Probability theory is, in essence, a calculus for

inference conducted under uncertainty (Chater et al., 20062006). To understand the Bayesian point of view it

is important to understand the subjective interpretation of probability.

The ‘frequentist’ interpretation of probability handles probabilities as limiting relative frequencies

of repeated identical ‘experiments’, such as coin flips or dice rolls. In comparison, in cognitive science,

probabilities refer to ‘degrees of belief’ (Chater et al., 20062006). Beliefs are peoples’ prior assumptions about

the range of possible values an observation can have along with a notion about how plausible the different

values are within this range. A person’s weak belief can be represented with a uniform distribution of

values, meaning that, for this person, any value within a certain range is equally credible. Another person

might have a much stronger belief about the same quantity, leading to only a few credible values from the

same range. Thus, two people seeing the same event, but having different belief states, will have different

subjective probabilities. In addition, the particular pattern of prior information and evidence will never be

repeated, so we cannot define the probability of this event as a limiting frequency (Chater et al., 20062006).

Probabilistic analyses of perceptual, linguistic, learning or motor tasks can be understood as the

process to understand what is believed, and what can be inferred. Subjective interpretation of probability

generally involves evaluating conditional probabilities. We are interested in the state of the world, what

we call a hypothesis, given certain observations. A typical every day task could be to determine from

our sensory input whether we know the person in front of us or not. Two alternative hypotheses would

describe the fact that we either know the person or not. Or we hear a human voice and want to infer

from which person this might have come from. In this case our set of hypotheses would describe a set of

possible persons we might expect to have uttered this sound. Hypotheses are not restricted to categories,

though. In another task, the alternative hypotheses might be the speed of an object that we see in the

dark and of which we are unsure. In general, hypotheses can take any form, from categorical values over

numeric values to structured symbolic representation, as long as they specify a probabilistic distribution

over observations (Griffiths et al., 20102010).

Denoting the set of possible hypotheses withH that might explain observed data D and assigning

each hypothesis h ofH a prior probability p(h) before observing D, then Bayes’ rule indicates that the

conditioned probability p(h|D) assigned to h after having observed D should be:

p(h|D)
︸ ︷︷ ︸

=: Posterior

=

=: Likelihood
︷ ︸︸ ︷

p(D|h) ·
=: Prior
︷︸︸︷

p(h)

p(D) =
∑H

i=1 p(D|hi) · p(hi)
(2.1)

2.1. How to Model User Behavior – Paradigms in Cognitive Science 29

This allows us to derive the probability in question, also known as posterior probability, as a product

of a) the probability of the data if the hypothesis were true, called the likelihood, and b) the degree

of belief in the hypothesis prior to the observations, called the prior probability. To obtain a proper

probability distribution the quotient is normalized by the probability of the data. Probability theory tells

us how a learner should revise their degrees of belief in a set of hypotheses in light of the information

provided by observed data.

When referring to a Bayesian approach, what is meant by this is the interpretation of probabilities

as subjective probabilities within the Bayesian theorem. When compared to cognitive architectures, it

is important to understand that Bayesian methods are a way to think about the nature of inferences

and not a framework that specifies computation like symbolic rule-based processing vs. connectionist

networks (Chater et al., 20062006). Bayesian methods can be applied on all three of Marr’s levels of analyses.

Thus, Bayesian methods can very well be implemented within a cognitive architecture. Furthermore,

probabilistic models can be defined over a broad range of candidate representations like causal graphs,

phrase structure grammars, logical rules or theories (Griffiths et al., 20102010).

The probabilistic framework allows us to address key questions about cognition (Griffiths et al.,

20102010): How much information is needed? What representations subserve the inferences people make?

What constraints on learning are necessary? The probabilistic approach to modeling cognitive behavior

begins by identifying ideal solutions to inductive problems and the representations that might be involved.

Representations and inductive biases are selected according to what is thought necessary to perform

the same operations as the brain, assuming only that those operations can be described as forms of

probabilistic inference. (Griffiths et al., 20102010)

To build a probabilistic model we have to start with a formal characterization of an inductive problem.

This includes the following steps:

1. To specify the hypotheses under consideration,

2. to specify the relation between these hypotheses and observable data, and

3. to specify the prior probability of each hypothesis.

One of the core strengths of the probabilistic framework is the transparent account of the assumptions

that allow a problem to be solved. In addition, the framework makes it easy to alter these assumptions

and explore the consequences of different assumptions.

The Bayesian approach utilizes not only probabilistic models but probabilistic generative models,

which are described by Tenenbaum et al. (20112011, p. 1280) as “a kind of mental model that describes the

causal processes in the world giving rise to the learner’s observations as well as unobserved or latent

variables that support effective prediction and action if the learner can infer their hidden state.” The

use of probabilistic generative models instead of deterministic models allows for handling the learner’s

uncertainty about the true states of latent variables and the true causal processes at work. Tenenbaum

et al. note that generative models are abstract in two senses: they are not only a description of a specific

situation but also of a broader class of situations, and they capture the “essential world structure” that is

responsible for the learner’s observations and allows generalization.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 30

Hierarchical Bayesian modeling

Whenever the Bayesian model should account for data from multiple participants, we have a design choice

to made. On the one side we could fit the model to individual participants, avoiding any aggregation

of the data. At the other end we could fit the model to aggregated data, which introduces stability by

averaging data but also the risk for artifacts. But simple nonhierarchical models are usually inappropriate

for hierarchical data, they either cannot fit large datasets or tend to ‘overfit’ (Gelman et al., 20142014, p. 101).

A middle way is provided by hierarchical Bayesian model (HBM). HBMs take into account the data

from all participants simultaneously, but, unlike fits of individual participants, postulate some degree of

dependence between participants. (Farrell and Lewandowsky, 20182018)

In HBMs individual variation is considered to be governed by an orderly distribution (Figure 2.92.9

on the following page). This distribution across individuals is called the parent distribution and can

be interpreted as a population distribution from which the individual parameter values are sampled

(Gelman et al., 20142014). The parent distribution characterizes the distribution of parameters that determine

the priors for each individual. For that reason, the parent distribution is also sometimes known as a

“hyperprior distribution” (Gelman et al., 20142014, p. 107) because it determines the shape of the priors

for each individual. Therefore, a HBM is always also a theory of individual differences. (Farrell and

Lewandowsky, 20182018)

In fact, any cognitive model can be instantiated as a hierarchical model. During the process of fitting

the model to the data, individual parameters for each subject and parameters of the parent distribution

are estimated simultaneously. Hierarchical models are so powerful because they try to explain individual

data and the group the participants belong to as well as possible (Farrell and Lewandowsky, 20182018).

One way to represent Bayesian models in general, and especially HBMs, is with the help of graphical

models. There is no agreed standard notation for representing graphical models, but the notation

introduced by Lee and Wagenmakers (20142014) should be regarded as such. In graphical models, all

variables are represented as nodes and their dependencies are indicated by arrows (see Table 2.22.2 on the

next page). Plates are used to indicate replications, for example for multiple trials. A graphical model

depicts the observed variables as well as the model components, that is, parameters or predictions of

the model. The model components are referred to as latent or non-observed variables and are further

divided into stochastic and deterministic variables. Continuous variables are denoted with circular nodes,

whereas discrete variables are square nodes. Observed variables, that is, the data, are shaded in gray,

irrespective of the shape of the node, whereas unobserved variables are left unfilled. Latent variables

that are deterministic, such as the predictions of the model that is computed from its parameters, are

represented by nodes with a double border.

As a short introduction into graphical notation and Bayesian models, I will describe the “Exam score”

example presented in Lee and Wagenmakers (20142014, p. 79) (graphical model given in Figure 2.102.10 on

page 3333). In this example we have observations of 15 people answering each 40 true-or-false questions.

The observed data suggest that there are at lest two groups of people, the ones who just guessing and the

ones who had some level of knowledge. We first assume that the number of correct answers ki for each

subject can be described by a binomial distribution that has two parameters, the success probability θi and

the number of total questions n. The last is known and fixed for all subjects. The first is a latent variable

2.1. How to Model User Behavior – Paradigms in Cognitive Science 31

Figure 2.9.: Exemplary hierarchical Bayesian model for an experiment about category learning (from
Kruschke, 2010b2010b, p. 296). Without going into detail here, the model distinguished between
individual, group level and global parameters. Global parameters connect different groups so
that data from one group can influence estimates of other groups. The model contains 12
group and global parameters, and 240 individual parameters.

Table 2.2.: Notation for nodes used in graphical models (based on Farrell and Lewandowsky, 20182018, p. 205).

Type of Variable

Status of Variable Discrete Continuous

Observed

Unobserved

Stochastic

Deterministic

2.1. How to Model User Behavior – Paradigms in Cognitive Science 32

θi

zi

φi

µ

λ

ki

ψ

n

i people

Priors

zi ∼ Bernoulli (0.5)
µ∼ Uniform (0.5,1)
λ∼ Gamma (0.001,0.001)

Intermediate variables

φi ∼ Normal (µ,λ)I(0,1)

Deterministic variables

ψ← 0.5

θi ←







φi if zi = 1

ψif zi = 0

Observable variables

ki ∼ Binomial (θi , n)

Figure 2.10.: Graphical model that implements the exam scores example (Lee and Wagenmakers, 20142014,
p. 79). The notation for (hierarchical) Bayesian models was introduced in Table 2.22.2 on the
preceding page.

we wish to infer from the data. However, because we assume at least two groups, θi is a deterministic

variable because once we knew the group, we also know θi. If the subject belongs to the group of guessers,

we assign a success probability of ψ= 0.5, so this value is fixed. If, on the other side, the subject belongs

to the group that has learned, we assume that the success probability is at least as good as guessing,

that is, something between 0.5 and 1. We model the success probability φi of the second group as a

normally distributed variable with mean value µ and precision λ. We do not assume anything about the

mean value and choose a uniform prior over the range of [0.5, 1]. The precision is also set to a common

non-informative prior. By choosing a parent distribution for the parameters of the success rate of the

knowledge group, we have created a hierarchical model. Each subject is modeled individually, that is the

model infers for each subject an individual success rate θi, but all subjects in the knowledge group are

connected via the parent distribution and share the same parameters µ and λ. The Gaussian distribution

is a “convenient (but not perfect) choice for this ‘individual differences’ distribution (...) at least in the

absence of any richer theory” (Lee and Wagenmakers, 20142014, p. 79).

A noticeable phenomenon of HBMs is a shift in the hierarchical estimates towards the overall average.

This type of behavior is common for hierarchical models, and is known as ‘shrinkage towards the mean’

Lambert (20182018, p. 437). This is an intended by-product of using HBMs, because it takes probability mass

away from the outlier estimates. The most extreme parameter estimates are shifted the most. HBMs take

probability mass away from outlier estimates, and reallocate it towards those points with higher certainty.

This behavior makes HBMs more robust than heterogeneous models because they are less susceptible

to overfitting. Another benefit of HBM is a greater sample size than for heterogeneous models, because

they partially pool data across groups. Due to the increased sample size HBMs achieve higher precision

for group-level estimates. In general, the benefits of HBM grow as the number of groups increases,

and when the data are sparser for each group. This approach works best when there are more than 10

2.1. How to Model User Behavior – Paradigms in Cognitive Science 33

groups, otherwise there is not enough data to reach an overall consensus Lambert (20182018). For an in-depth

introduction to HBMs I refer the reader to Gelman et al. (20142014) and Kruschke (20152015).

Bayesian data analysis

In the last section we have discussed the basics and merits of probabilistic generative models. These

explanatory models make semantic ascriptions to the functional from or the parameters of the model,

that is, they postulate a mechanistic meaning. Merely descriptive models, on the other side, summarize

the relations between variables without ascribing mechanistic meaning to the model. The main idea is

that Bayesian inference should guide data analysis regardless of whether Bayesian explanatory models

account for cognition.

Bayesian data analysis is favorable over traditional data analysis as the latter has many “well-

documented problems” like the concept of ‘statistically significant’, point estimates of parameter values

and the meaning of confidence intervals, all of which are ill defined because they are based on p values

(Kruschke, 2010b2010b, p. 293). Bayesian analysis involves no p-values and inferences provide rich and

complete information summarized in the posterior distribution, which is the main output of any Bayesian

data analysis.

Kruschke emphasizes that Bayesian methods for data analysis are distinct from Bayesian models of

mind. In the former, any useful descriptive model of the data has parameters estimated by normative,

rational methods. But the descriptive models have no “necessary relation or commitment to particular

theories of the natural mechanisms that actually generated the data” (Kruschke, 2010b2010b, p. 293). Kruschke

and Liddell differentiate between three applications of Bayesian methods in psychology and other sciences.

All three applications use a parameterized model that uses Bayesian inference to reallocate prior beliefs.

What differs between the applications is the “semantic referent of the model and its parameters” (Kruschke

and Liddell, 2018a2018a, p. 171). The first application is generic data analysis in which the model describes

trends in the data, without any necessary reference to a process that generated the data. The second

application is psychometric models in which the data is known to have been produced by a mind. The

third application is the Bayesian model of a mind in which the mind itself is conceived as a “Bayesian

statistician, taking data from the world and updating its internal state by using Bayesian inference.”

In Bayesian data analysis, the descriptive model is easily customizable to the specific situation –

by specifying which of the variables are observed and which are latent and thus to be inferred by the

model or which information in form of prior knowledge restrains the inference process – without the

computational restrictions of the traditional null hypothesis significance testing. The descriptive model

is useful for summarizing the data and could be either a generic domain-independent model such as

linear regression or a domain-specific model. Like with probabilistic generative models, the analysis starts

with the specification of the current uncertainty of parameter values, summarized by prior distributions,

that is acceptable to a “skeptical scientific audience” (Kruschke, 2010b2010b, p. 295). Bayesian inference

then yields a complete posterior distribution by reallocating beliefs according to the data. Belief is

shifted from parameter values that are less consistent with the data to parameter values that are more

consistent with the data (Kruschke, 2010a2010a). The posterior summarizes the relative credibility of every

possible combination of parameter values and holds the complete information about correlations of

credible parameter values (Kruschke, 2010b2010b). It is straightforward to computer power and replication

2.1. How to Model User Behavior – Paradigms in Cognitive Science 34

probabilities from the gained posterior probability distributions, as well as credible intervals for the

parameter estimates. According to Kruschke, p. 297, the posterior distribution over the parameter values

is our “best representation of the world” based on the information we have observed and that is available.

In summary, the essence of Bayesian inference is reallocation of credibility across possibilities. The

distribution of credibility initially reflects our prior knowledge about the world, which can be quite vague

or very specific. Then new data are observed, and the credibility is re-allocated. Bayesian analysis is the

mathematics of re-allocating credibility in a logically coherent and precise way.

Although it was said that the descriptive models are no explanatory models, there are of course

desiderata for a mathematical description of the data (Kruschke, 20152015). First, the model should be

specified by comprehensible distributions with meaningful parameters. Second, the mathematical descrip-

tion should be “descriptively adequate”, which means that there are no important systematic deviations

between the trends in the data and the form of the model. However, what is an apparent discrepancy and

what is not might change during the scientific progress of the analysis.

To better understand the process of Bayesian data analysis, I will repeat the 5 steps of Bayesian data

analysis presented in Kruschke (20152015) (Figure 2.112.11 on the next page):

1. Identify the data relevant to the research question. This involves the measurement scales of the

data, and the definition of variables that are to be predicted and variables that are predictors.

2. Define a descriptive model for the relevant data. The mathematical form and its parameters should

be meaningful. The model should be appropriate to the theoretical purposes of the analysis.

3. Specify a prior distribution of the parameters. The prior should capture the assumptions of the

analyst and be agreeable to other skeptical scientists.

4. Use Bayesian inference to re-allocate credibility across parameter values. Interpret the posterior

distribution with respect to the research questions.

5. Check that the posterior predictions mimic the data with reasonable accuracy, which is called

“posterior predictive check”. If not, consider a different descriptive model and repeat the analysis.

Gelman et al. (20142014) summarizes the process of Bayesian data analysis somewhat shorter in three

steps: First, setting up a fully probability model, that is, a joint distribution for all observable and

non-observable quantities in a problem. Secondly, calculating and interpreting the appropriate posterior

distribution, that is, the conditional probability distribution of the unobserved quantities, given the

observed data. Thirdly, evaluating the fit of the model and the implications of the resulting posterior

distribution: how well does the model fit the data, are the conclusions reasonable, and how sensitive are

the results to the modeling assumptions of step one? The approach presented in the sections 4.34.3 and 5.15.1

on page 8080 and on page 103103 is closely aligned with the steps presented here and I will describe in detail

the assumptions made as well as the output of each step.

What is the posterior predictive check? With a posterior predictive check, one wants to know if the

model mimics the data reasonably well. There is no single, unique way to ascertain whether the model

predictions systematically and meaningfully deviate from the data (Kruschke, 20152015). One approach, that

I will follow in this work, is to plot a summary of predicted data from the model against the actual data.

If a systematical deviation between the actual data and the predicted form is found, then alternative

descriptive models might be elaborated. A descriptive model can be modified in many different ways,

including reparametrization and hierarchical extensions. We will come to this later.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 35

1. Identify relevant data

5. Posterior predictive
check

Simulate data from
the posterior distribution

Compare simulations with
observations

Select between different
models

2. Define descriptive model
3. Specify prior distribution

4. Use Bayesian inference

Define observable and
non-observable variables

Define discrete and
continuous variables

Define domain of variables

Specify causal relationships

Specify global, group and
observable variables

Ensure descriptively adequacy

Analyze trace quality and
convergence

Analyze
posterior distributions

Analyze
posterior joint distributions

Figure 2.11.: The five steps of Bayesian data analysis according to Kruschke (20152015) with exemplary output.
The output of the first step are latent and observable variables. Latent variables are not
directly observable and should be inferred from the observable variables. In the second
and third step a descriptive probabilistic Bayesian model is built that represents the causal
relationships between the latent and observable variables. Bayesian inference in the fourth
step allows for computing the posterior distribution over the model parameters. Finally, the
model is validated by comparing the model’s predictions with the original observations.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 36

1.10 1.05 1.00 0.95 0.90 0.85
1

Po
st

er
io

r P
ro

ba
bi

lit
y

De
ns

ity

-1.05 -0.92

95% HPD

mean=-0.98

4.90 4.95 5.00 5.05 5.10 5.15 5.20
2

4.94 5.12

95% HPD

mean=5.03

Figure 2.12.: A posterior distribution gained by Bayesian inference from a probabilistic model. In this
example, the mean values µ1,µ2 of a two-dimensional multivariate normal distribution
N (µ,Σ) with unknown mean vector and known co-variance matrix were inferred. Each
posterior is represented by the frequency of the values in form of a histogram and a kernel
density estimation of this histogram. HPD refers to the HDI, which is described in the text.

The main output of the Bayesian inference is a posterior distribution for all latent model parameters

(Figure 2.112.11 on the preceding page). The posterior distribution assigns each parameter value a credibility

value that is a combination of its prior probability and its likelihood. In Bayesian data analysis a posterior

distribution is often summarized by the so-called highest density interval. The HDI is not particular to the

posterior distribution but can be given for any density. The HDI indicates which points of a distribution

are most credible, and which cover most of the distribution. It specifies an interval such that every point

inside this interval has higher credibility than any point outside the interval. The exact value of this

credibility can be specified arbitrarily. Formally, the values of x in the 95 % HDI are those such that

p(x)>W where W satisfies
∫

x:p(x)>W

p(x)d x = 0.95.

W is some value for which this assumption holds true (Kruschke, 20152015). The width of the HDI is a direct

measure of uncertainty of belief. If the HDI is wide, then beliefs are uncertain, as the possible values of

the latent parameters span over a huge range. If the HDI is narrow, then beliefs are much more certain,

as the range of possible values of the latent parameters are limited to a small range. For further details

along with a discussion about the influence of different choices for the prior and the influence of different

sample sizes I refer the reader to (Kruschke, 20152015).

Markov Chain Monte Carlo

So far, we have seen that the posterior distribution is computed from the prior distribution and the

likelihood function of the data. But nothing was said about how this computation is executed exactly.

Bayes’ theorem describes the way in which the prior distribution and the likelihood function are combined

to obtain the posterior distribution, but the computation itself involves the computation of the product of

two probability densities and the computation of the marginal probability of the data in the nominator.

Often, these calculations are analytically intractable for realistic and more complex applications. The main

2.1. How to Model User Behavior – Paradigms in Cognitive Science 37

idea of a class of methods called Markov chain Monte Carlo is to approximate the posterior distribution

in the form of a large number of values sampled from that distribution.

In general, all simulation (stochastic) methods are based on drawing random samples θ s from

an otherwise intractable target distribution p(θ) and estimating the expectation of any function f (θ)
(Gelman et al., 20142014),

E [f (θ)|y] =
∫

f (θ) · p(θ |y)dθ ≈
1

S

S
∑

s=1

f (θ s). (2.2)

MCMC assumes that the posterior distribution is specified by a function that is easily evaluated. In

addition, the value of the likelihood function must be computable for any specified values of D and θ

(Kruschke, 20152015). The samples gained from the posterior distribution by MCMC can be used to estimate

the central tendency of the posterior, its HDI, etc. When the preconditions are met, sample values from

the target distribution are generated by following a random walk through parameter space. The walk

starts at some arbitrary point (and each chain has its own starting point) where the target distribution is

non-zero. At each time step the random walk proposes a move to a new position in parameter space and

has to decide whether or not to accept the proposed move. The proposal distributions can take on many

different forms with the goal to efficiently explore the regions of the parameter space where the target

distribution has most of its mass. The decision is based on computing the ratio pmov e = P(θproposed)/P(θcur rent)

(Kruschke, 20152015).

The first part of the name MCMC stems from the fact, that any simulation that samples random

values from a distribution is called a Monte Carlo simulation, named after the famous casino locale. In

addition, each step in the generated random walks is completely independent of the steps before the

current position. Any such process in which the probability of the next step is dependent only on the

current one and not on all previous steps is called a (first-order) Markov process, and a succession of such

steps is a Makov chain (Kruschke, 20152015).

Given sufficient time, the history of the Markov chain, {q0, . . . , qN}, denoted samples by the Makov

chain, becomes a quantification of the target distribution. We can estimate expectations across the entire

parameter space by averaging the target function over this history (Betancourt, 20172017),

f̂N =
1

N

N
∑

n=0

f (qn). (2.3)

With more and more samples the Marko chain will explore the “typical set” of the target distribution

better and better, and will converge to the true expectations,

lim
N→∞

f̂N = Eπ[f]. (2.4)

Because time and memory are limited resources in real world applications, the asymptotic behavior

is of limited use in practice and robust methods are necessary that ensure that the Markov chains reach

2.1. How to Model User Behavior – Paradigms in Cognitive Science 38

a sufficiently close approximation of the target distribution after only a finite number of transitions.

(Betancourt, 20172017).

The exploration of parameter space by a Markov chain typically happens in three phases (Betancourt,

20172017) [Figure]. In the first phase the Markov chain converges (or tries to converge) towards the typical

set from its initial position in parameter space. The samples from this first phase are normally excluded

from the final set of samples (which is called the burn-in of the MCMC sampler), because they are not

representative for the form of the target distribution but were necessary for finding the right region in

parameter space. The second phase begins once the Markov chain finds the typical set and now a first

exploration of the typical set takes place. This initial exploration is extremely effective and the accuracy of

the MCMC estimators rapidly improves. The third and last phase consists of an ongoing exploration where

the Markov chain refines its exploration of the typical set, but the precision of the estimators improves

much slower.

When the MCMC sampler has entered the third phase, the MCMC estimators satisfy a Central Limit

Theorem

f̂ MC MC
N ∼N (Eπ[f], MCMC-SE) , (2.5)

where the MCMC standard error is defined as

MCMC-SE≡

√

√

√Varπ[f]

ESS
. (2.6)

The effective sample size is defined as

ESS=
N

1+ 2
∑∞

k=1 AC F(k)
, (2.7)

where ACF(k) is the lag-k auto-correlation of f over the history of the Markov chain. When

consecutive samples of a Markov chain are highly auto-correlated, then ESS will be low and the MCMC

standard error will be high due to a lack of sufficient non-correlated samples. Thus, a high ESS value is

favorable. The effective sample size quantifies the number of exact samples from the target distribution

necessary to give an equivalent estimator precision and hence the effective number of exact samples

“contained” in the Markov chain (Betancourt, 20172017, p. 16). Kruschke (20152015) recommends an ESS of

10,000 for reasonably accurate and stable estimates of the limits of the 95 % HDI. As we will see, such

large numbers for ESS are hard to achieve for more complex models. Gelman et al. (20142014) note that, in

general, fewer simulations are needed to estimate posterior medians of parameters, probabilities near 0.5,

and low-dimensional summaries than extreme quantiles, posterior means, probabilities of rare events,

and higher-dimensional summaries. The “guess-and-check” strategies of classical but still widely used

MCMC algorithms like Metropolis-Hastings are “doomed to fail in high-dimensional space” due to the

exponential number of directions in which to guess (Betancourt, 20172017). More modern approaches like

2.1. How to Model User Behavior – Paradigms in Cognitive Science 39

Hamiltonian Monte Carlo exploit information about the geometry of the typical set and generate coherent

exploration of smooth target distributions which yields better computational efficiency than other MCMC

algorithms, along with stronger guarantees on the validity of the resulting estimators (Betancourt, 20172017).

Betancourt (20172017) gives an introduction to the ideas behind Hamiltonian Monte Carlo.

How can we diagnose convergence? Visually, convergence means that different chains of a MCMC

run meet in the same region of parameter space. Divergence could mean that different chains keep stuck

in different regions of the parameter space or that they evolve over time, but yet do not converge to

the same region. A common measure for chain convergence is the Gelman-Rubin statistic, which the

authors Gelman et al. call the potential scale reduction. The idea is to evaluate mixing and stationarity

simultaneously. Mixing is assessed via a between-sequence variance B, whereas stationarity is assessed

via within-sequence variances W . The potential scale reduction R̂ is estimated by a weighted average of

this two variances,

Ôv ar+(ψ|y) =
n− 1

n
W +

1

n
B (2.8)

R̂=

√

√

√
Ôv ar+(ψ|y)

W
. (2.9)

In the limit of infinite samples R̂ declines to 1, which means perfect convergence. If the potential

scale reduction is high, then we have reason to believe that the chains have not fully converged yet and

further simulations may improve the inference about the target distribution. There is no hard threshold

for when R̂ is considered a high value, but according to Lee and Wagenmakers (20142014, p. 80) values for

R̂ higher than 1.1 are “(deeply) suspect”. This threshold is also the reported value in the probabilistic

programming library PyMC3 that is used in this thesis. A further discussion of methods for monitoring

convergence of iterative simulations can be found in Brooks and Gelman (19981998).

2.1. How to Model User Behavior – Paradigms in Cognitive Science 40

Table 2.3.: Summary statistics of the MCMC chains for the toy example of this section.

Mean SD MCMC-SE HDI2.5 HDI97.5 neff R̂

µ1 −0.98 0.03 0.0 −1.05 −0.92 4007 1.0
µ2 5.03 0.04 0.0 4.94 5.12 4045 1.0

Example: An MCMC example
I conclude this section with a small toy example to introduce the most important plots and results

when working with MCMC methods for Bayesian data analysis. Consider a two-dimensional data set

of 1000 data points D = {(x i, yi)}, i = 1, . . . , N = 1000 (Figure 2.13a2.13a on the next page). We want to

model these data with a multivariate normal distribution, hence y ∼N (µ,Σ), with µ=

�

µ1

µ2

�

. For the

sake of simplicity we assume that we know the co-variance matrix Σ well enough so that we are only

concerned with finding values for the mean values of the multivariate normal distribution. For our

model this means that we have the observations (x i, yi) along with the co-variance matrix Σ and our

latent unknown variables are µ1 and µ2.

I chose a Hamiltonian Monte Carlo sampler as MCMC algorithm and drew 1000 samples after a

tuning phase of 500 samples. I ran four chains simultaneously, which resulted in 6000 samples in total.

The traceplot for each parameter shows us that the different chains have converged after the tuning

phase to the same region in parameter space (Figure 2.13c2.13c on the following page), which improves

our confidence in the results. The main result of the analysis is the posterior distribution for the latent

parameters µ1,µ2 (Figure 2.122.12 on page 3737). Having the posterior distribution, we can easily compute

the 95 % HDIs along with point estimates like the mean or the median for the parameters. The width of

both the 95 % HDI is very small, further increasing the confidence into the model’s belief. The summary

statistics for the trace show small MCMC errors, small 95 % HDI and good values for R̂, indicating

convergence of the four chains. The effective number of samples neff is around 66 % of the overall

sample size, which is good enough for a good first estimate of central tendencies as long as we are

not interested in rare events or the exact tails of the distribution (Table 2.32.3). Finally, looking at the

predictions from the posterior predictive distribution, we can safely assume that our model was able to

capture the essence of the observable data (Figure 2.13b2.13b on the next page).

2.1. How to Model User Behavior – Paradigms in Cognitive Science 41

4 3 2 1 0 1 2
x

0

2

4

6

8

10

y

(a) Two-dimensional observations (x i , yi) obtained
from a two-dimensional multivariate normal
distribution with µ = [−1, 5] and Σ =
[[1,0.25], [0.25,2]]. The density is approximated
by a kernel density estimation.

4 3 2 1 0 1 2
x

0

2

4

6

8

10

y

(b) 1000 samples drawn from the posterior predictive
distribution of the model. The density is approxi-
mated by a kernel density estimation.

1.05 1.00 0.95 0.90 0.85

0
2
4
6
8

10
12

Fr
eq

ue
nc

y

1

0 200 400 600 800 1000

1.05

1.00

0.95

0.90

0.85

Sa
m

pl
e

va
lu

e

1

4.90 4.95 5.00 5.05 5.10 5.15 5.20

0

2

4

6

8

Fr
eq

ue
nc

y

2

0 200 400 600 800 1000

4.90

4.95

5.00

5.05

5.10

5.15

5.20

Sa
m

pl
e

va
lu

e

2

(c) Traceplots for the two model parameters µ1,µ2 for each of the four chains. (Left) Posterior distribution as kernel
density estimation for each of the four chains. (Right) Traceplot of the 1000 samples for each of the four chains
drawn after the tuning phase.

Figure 2.13.: Example of Bayesian data analysis fitting a multivariate normal distribution with unknown
mean and known co-variance matrix to two-dimensional data. Plots belong to the MCMC
example

.

2.1. How to Model User Behavior – Paradigms in Cognitive Science 42

2.2 How to Capture User Behavior – Experience API

Learning Analytics (LA) is a new trend in the e-learning community that applies data-driven approaches

to e-learning applications (Blanco et al., 20132013). The aim is to gather and analyze educational data.

The learning experience itself is increasingly taking place within Learning Management System (LMS)

deployed by educational institutions. One problem of these LMSs is that thy lack standardized data

structures. Thus, LA tools tend to be tied to specific implementations of LMS and databases (Blanco et al.,

20132013).

One of the key components of LA and Educational Data Mining (EDM) are the learner’s sensors which

capture the data generated during the interaction with a LMS. The captured data is stored in a Learning

Record System (LRS) to be consumed by the LA services. A key requirement to facilitate interoperability

among the architecture components and to enable the integration of new ones is a specification that

describes a universal format of how data are captured, stored and, retrieved.

Interoperability is defined by Bakhouyi et al. (20172017) as “the ability of different e-learning systems

and software applications to ensure the harmonization of content between them, allow the sharing

of educational content between different environments, to exchange data and to use the information

exchanged.” The objectives of e-learning interoperability standards is to provide a compliant data model

and communication protocol. Once these standards are integrated into e-learning systems, users can start

to create and use content from multiple systems and from different suppliers.

Several initiatives have tried to develop standards for e-learning content interoperability. Among

these initiatives are the IMS Global Learning Consortium, the IEEE Learning Technology Standards

Committee (LTSC), the Aviation Industry CBT Committee (AICC), and the Advanced Distributed Learning

(ADL) Initiative (Bakhouyi et al., 20172017). ADL has developed a set of technical guidelines called SCORM

(Sharable Content Object Reference Model) to better support flexible and lifelong learning. The next

evolution of SCORM was the Tin Can API, an open source standard that is flexible and serves to track

learning experiences and activities as well as store learning data. In 2013, the third version of the Tin Can

API was published under the name Experience API (xAPI). It is a Representational state transfer (REST)

wen service based on JavaScript Object Notation (JSON) for its data format. The Experience API (xAPI)

specification, has become the de facto standard due to its simple data model and the number of vendors

that have adopted it (Vidal et al., 20152015).

Berdun and Armentano (20182018, p. 1) define a user profile as a “representation or description of

different aspects of a user in a computer application”. Today, intelligent systems automatically learn

the collaborative profiles of users by means of the observations of the users behavior (Berdun and

Armentano, 20182018). The traditional method to obtain information about the user is by means of self-

perception questionnaires, which have many disadvantages. Instead, it is desired to build profiles

from the observations of the user behavior in an digital game that tests the users ability. Berdun and

Armentano give an example of how to build profiles from game actions based on the coding scheme

Multiple Level Group Observation System (SYMLOG). They collected all actions taken by users in a game

session like actions that the user executes in the regular course of the game, spontaneous decisions,

participation in collective decision making situations, and the state of the game variables that condition

2.2. How to Capture User Behavior – Experience API 43

the performed action. The rules used for mapping user actions to SYMLOG attributes followed the

structure <user> ∧ <action> ∧ <state>⇒ <SYMLOG>.

xAPI focuses on defining and interoperable data model for storing data about students’ learning

experience and an API for sharing these data among systems. The central element in xAPI is the LRS,

which can reside inside a LMS or in an independent server. At any time, activities can send in their

collected data over the xAPI web service. xAPI uses RESTful HTTP requests and can be used with any

programming language.

The xAPI data model is based on the concept of Activity Streams (Activity Streams 2.0Activity Streams 2.0 20172017) and

highly influenced by the socio-cultural framework Activity Theory, which stores a user’s activity as a

statement of the form “I did this.” The xAPI data model is an extension of this simple idea to track all

aspects of the learning experience. The basic structure of an xAPI statement is as follows (Figure 2.142.14 on

page 4646):

<actor> <verb> <object>, with <result>, in <context>.

The three properties actor, verb, and object are required but can be complemented with result and

context elements. A complete example with all properties is given in Listing 2.22.2 on the next page. CMI-5

is a standard that was officially launched in June 2016 by ADL. It represents the combined effort of AICC

and ADL to resolve the problems and shortcomings of the SCORM standards and its xAPI extension by

adding extra rules. This new specification was adopted by more then 170 organizations in June 2016

(Bakhouyi et al., 20172017).

There exist a range of validation tools for xAPI statements. Rabelo, Lama, Vidal, et al. (20172017) have

analyzed four of the most promising tools and have found that SmartLAK is the most suitable tool to

perform the validation and verify the xAPI data model: statements, contexts, and activities. SmartLAK

also provides a GUI from which users can directly check their JSON-formatted xAPI statements. In

addition, SmartLAK offers Intelligent Analytics Services (IAS) that process the LRS data to provide

valuable information that help teachers to gain a better understanding of what is happening in the course

or to facilitate the teaching and learning process (Rabelo, Lama, Amorim, et al., 20152015).

Serrano-Laguna et al. (20172017) developed an interaction model that establishes a basis for applying

LA into serious games and presented an implementation of their model with the xAPI. They identified

common targets, that is, objectives of the players’ action, across all surveyed serious games: a) completable,

which a player can start, progress on and complete within a serious game, b) alternative, which is a set

of options among which the player has to choose at a given point in the game, c) meaningful variable,

which is a value inside the game world with a special significance and which can be set by the player,

and d) custom interaction, which is an extension to track events not covered by the other event types

above. They provided a mapping of the interaction events, of the event actions and the target types to

the associated xAPI equivalence and showed the practicality of their implementation with the Countrix

serious game as an example of use of the Serious Game xAPI profile.

2.2. How to Capture User Behavior – Experience API 44

Listing 2.2: xAPI statement according to CMI-5 specifications, from the official xAPI specification.
1 {

2 "id":"2a41c918-b88b-4220-20a5-a4c32391a240",

3 "actor":{

4 "objectType":"Agent",

5 "name":"Gert Frobe",

6 "account":{

7 "homePage":"http://example.adlnet.gov",

8 "name":"1625378"

9 }

10 },

11 "verb":{

12 "id":"http://adlnet.gov/expapi/verbs/failed",

13 "display":{

14 "en-US":"failed"

15 }

16 },

17 "object":{

18 "id":"https://example.adlnet.gov/AUidentifier",

19 "objectType":"Activity"

20 },

21 "result":{

22 "score":{

23 "scaled":0.65,

24 "raw":65,

25 "min":0,

26 "max":100

27 },

28 "success":false,

29 "duration":"PT30M",

30 "extensions":{

31 "https://w3id.org/xapi/cmi5/result/extensions/progress":100

32 }

33 },

34 "context":{

35 "registration":"ec231277-b27b-4c15-8291-d29225b2b8f7",

36 "contextActivities":{

37 "category":[

38 {

39 "id":"https://w3id.org/xapi/cmi5/context/categories/moveon"

40 },

41 {

42 "id":"https://w3id.org/xapi/cmi5/context/categories/cmi5"

43 }

44]

45 },

46 "extensions":{

47 "https://w3id.org/xapi/cmi5/context/extensions/sessionid":"458240298378231"

48 }

49 },

50 "timestamp":"2012-06-01T19:09:13.245+00:00"

51 }

2.2. How to Capture User Behavior – Experience API 45

Figure 2.14.: The semantic network of the statement model of the xAPI specification (from Vidal et al.,
20152015, p. 268). A statement is used to represent a learning event and as such consists of three
required properties: the actor, the verb, and the object (left hand side). Besides the required
properties, xAPI statements are allowed to store additional information about results, the
context, the authority, and can have an attachment as part of the learning record. The
remaining four properties are data properties.

2.2. How to Capture User Behavior – Experience API 46

2.3 How to Think About User Behavior – Learner Attributes

Researchers and developers from the educational community started not long ago exploring the po-

tential adoption of sophisticated analytic techniques to evaluate rich data sources. Two areas under

development oriented towards the inclusion and exploration of data-driven capabilities in education

are Educational Data Mining (EDM) and Learning Analytics (LA). EDM is concerned with “developing,

researching, and applying computerized methods to detect patterns in large collections of educational

data that would otherwise be hard or impossible to analyze due to the enormous volume of data within

which they exist” (Romero and Ventura, 20122012, p. 12). And LA is “the measurement, collection, analysis

and reporting of data about learners and their contexts, for purposes of understanding and optimizing

learning and environments in which it occurs”22. For the purpose of this thesis, the field of LA can offer

valuable insights into what constitutes a good learning experience and which learner attributes are already

in the focus of interest.

Papamitsiou and Economides (20142014) provide a literature review of 40 key studies published between

2008 and 2013, which revealed four distinct major directions of the LA/EDM empirical research. The

majority of studies investigated issues related to student/student behavior modeling and prediction

of performance, followed by increase of students’ and teachers’ reflection and (self-)awareness and

improvement of provided feedback and assessment services. Modeling students’ learning behavior also

comprises modeling affective and metacognitive states. Most of these studied used learners’ interactions

with the learning environment, automatically-generated data during the activity, response times and

sequence of actions to infer learning strategies. Regarding the student’s motivation, studies found that

demographics and factors like achievement rates and final performance were associated to students’

motivation to remain engaged and actively enrolled in courses. Because motivation is one the main

cognitive variables that a CogIUM might infer from users’ interactions, these findings are directly relevant

for this work. For the task of performance prediction the number of quizzes passed was the main

determinant of performance, while other measures like frequencies of the events and time-spent could

identify activities that are related to higher or lower marks. In another study, engaged concentration and

frustration were correlated with positive learning outcomes, while boredom and confusion are negatively

correlated with performance. Regarding the task of predicting dropout and retention studies could

show that monitoring students’ activity and applying data-driven machine learning methods on students’

profiles and log files from LMS databases allowed for detecting students at risk at an early state. Studies

also suggest to consider additional learner attributes like experience level indicators, learning interests,

learning styles, learning goals and competences and background information, their recent navigation

history or learner’s affective traits in recommendation processes.

Serrano-Laguna et al. (20172017) performed a review of serious games found in the literature to detect

the common interactions tracked in serious games. The most common form of interaction strategy

encountered in games is event-based, where the game logs pre-specified events when they occur. Most of

these events include at least a timestamp, when the event was generated, and a user id, identifying the

player that originates the event. The analyzed serious games tracked the completion (binary value) or the

level of completion achieved (percentage) by the players, whether the game was fully completed or a

2 https://tekri.athabascau.ca/analytics/https://tekri.athabascau.ca/analytics/

2.3. How to Think About User Behavior – Learner Attributes 47

https://tekri.athabascau.ca/analytics/

more fine-grained level of detail. Furthermore, they tracked the in-game choices performed by players in a

given context, most commonly questions with multiple answers. Serious games also gathered meaningful

measurable variables to calculate the players’ learning outcomes. The most common variables were score,

number of in-game deaths and kills or coins collected. All these variables can reveal the level of success

in the learning goals involved. Of course, most of these games also collected game-specific events, for

example chat logs, number of times a player asked for in-game help, and biometric information using

several external devices.

Kickmeier-Rust, Mattheiss, et al. (20112011) present a psycho-pedagogical framework for multi-adaptive

educational games that utilizes the formal framework of the Competence-based Knowledge Space Theory

(CbKST), which is a cognitive framework, to realize micro level adaptation. The basic idea of CbKST is

to separate the observable performance and underlying latent skills or competencies. The relationship

between the skills and learning objectives are established by skill and problem functions. CbKST provides

a probabilistic approach to assessment with probability distributions over all possible skill states, and with

each action the probabilities of those states that include the relevant skill are updated. CbKST allows for

monitoring and interpreting the learner’s behavior in the game and enabled the authors to assess the

player’s motivation.

Kickmeier-Rust and Albert (20122012) give an overview about the assessment in educational serious

games. They list the following performance related aspects: scores, task completion rates and times, task

success rates, task success depth, distance covered and progress in the game world, exhibited knowledge,

competence states, or skills, and incongruent behaviors as indicators for succeeding by chance. These

aspects should be analyzed and interpreted to assess the following important dimensions: individual

preferences, progress, results and scores, traits and aptitudes, prior knowledge and ability and prior

achievements. Another model that supports cognitive aspects is the Cognitive Trait Model (CTM), which

enables student modeling on the basis of cognitive abilities and resources (Lin et al., 20032003).

In this thesis I wanted to realize a CogIUM that is based on a theory which gives a plausible explanation

for how cognitive variables might lead to the observed performance of a learner in an educational serious

digital game. Ideally, the theory should incorporate affective states as well as motivation and prior

knowledge, all aspects we have seen to be important for predicting the learner’s performance. One such

theory is Cognitive Load Theory (CLT) which was chosen as the theory behind the realized CogIUM. I will

present the theory along with its main components and how they affect a learner’s performance in the

next section.

2.3.1 Cognitive Load Theory

What distinguished an expert from a novice? How are experts able to process much more information

than novices without obvious difficulties? Sweller (19881988) answered these questions with the concept

of cognitive load. Experts differ from novices in three major ways: they can store a higher number of

problem state configurations, also called chunk size, they use more effective problem solving strategies by

recognizing each problem and each problem state from previous experience and know appropriate moves,

also called schema, and they use more relevant features in categorizing problems according to acquired

schemas. Thus, schema acquisition constitutes a primary factor when determining a person’s problem

solving skill.

2.3. How to Think About User Behavior – Learner Attributes 48

To explain the phenomenon that some problem-solving strategies like means-end analysis infer with

learning, Sweller assumed that the cognitive load imposed on a person using a complex problem solving

strategy might interfere with learning during problem solving. The steps required to conduct the strategy

use much of the available cognitive-processing capacities, so that little is left for schema acquisition.

Sweller could show in experiments that changing the strategy to a nonspecific goal strategy indeed

enhanced the development of problem-solving expertise.

Why should schema acquiring help in processing more information or freeing resources? Merriënboer

and Sweller (20052005) explain that the central assumption is that working memory as a short-term memory

is limited and stores about seven elements, but operators on just two to four elements at a given time.

Importantly, the capacity of working memory is limited only when dealing with new information obtained

through sensory memory. Working memory has no known limitations when retrieving information from

long-term memory, on the contrary, long-term memory alter the characteristics of working memory. This is

due to cognitive schemata stored in long-term memory. Schemata organize information or knowledge that

is processed in working memory, freeing capacities of working memory for other processes. In contrast,

when dealing with novel information for which no schema-based central executive is available, working

memory capacity becomes a limiting factor. If no knowledge can be used to organize information, it must

be organized randomly for the first time and the organization then is tested for effectiveness. Schemas

can be acquired through a great deal of practice, but only for those aspects of performance that are

consistent across problem solving situations, such as routines. More on the aspects of the human cognitive

architecture can be found in Sweller et al. (19981998).

Sweller et al. introduced the Cognitive Load Theory (CLT) to provide guidelines for an optimal

instruction design in a manner that encourages learner activities that optimize intellectual performance.

CLT postulates that working memory load may be affected either by intrinsic cognitive load (ICL) or

extraneous cognitive load (ECL) (Merriënboer and Sweller, 20052005). Whereas ICL represents the intrinsic

nature of the material being learned and depends on the number of interactive elements that must be

processed simultaneously in working memory, ECL, in contrast, is load that is not necessary for learning,

that is, for schema construction and automation. A high ECL can lead to a range of undesirable effects

(Merriënboer and Sweller, 20052005; Sweller, 19941994, 20102010; Sweller et al., 19981998). ICL cannot be altered by

instructional design because the element interactivity of the material or task is fixed. Materials with

high element interactivity are difficult to understand and the only way to deal with it is to develop

cognitive schemata that incorporate the interacting elements. ECL, instead, can be altered by instructional

interventions. ICL and ECL are additive and together sum up to the total cognitive load experienced

by the learner. A third type of load had to be included to explain findings where high variability in

materials presented to learners increased the total cognitive load during practice but yielded better schema

construction and transfer of learning. germane cognitive load (GCL) describes the resources working

memory dedicates to schema construction and automation and thus contribute to learning. Although the

triarchic theory of cognitive load is not supported by all researchers, there is strong evidence that favors

the triarchic theory of cognitive load over a unitary theory of cognitive load (DeLeeuw and Mayer, 20082008;

Klepsch et al., 20172017).

The clearest and most accurate description of the CLT is given in an article by Sweller (20102010), in

which he not only states that both ICL and acecl can be explained by element interactivity, but clarifies

2.3. How to Think About User Behavior – Learner Attributes 49

misconceptions about GCL that were emerging in the literature (Figure 2.152.15 on the following page). As

was said, ICL is imposed by the natural complexity of information that must be understood and material

that must be learned and is independent of the instructional design. However, ICL is not independent

of the learner, because the learner’s knowledge level determines the amount of cognitive load that is

imposed by ICL. An expert with rich schemas experiences the complexity of a given material differently

from a novice with no task knowledge. For a given task and given learner knowledge level, however, ICL

is fixed and cannot be altered other than by changing the task itself. ECL is cognitive load imposed by

instructional procedures that are less than optimal. ECL is entirely independent of the characteristics of

the learner. But it can be minimized by optimizing the instructional design and CLT is primarily concerned

with techniques designed to reduce this type of cognitive load. GCL differs from ICL and ECL as it is

determined entirely by the characteristics of the learner. GCL refers to the working memory resources that

are devoted to deal with the ICL of the learning material. Thus, GCL is independent of the information

presented and it does not contribute to the imposed working memory load, it is purely a function of the

working memory resources devoted to deal with the interacting elements. GCL can, however, be altered

by the motivational level of the learner. If the level of motivation is constant, the learner ha no control

over GCL. In summary, cognitive load can be due to element interactivity associated with either intrinsic

or extraneous cognitive load. Working memory resources that deal with ICL are germane to the task and

so are referred to as GCL. Workin memory resources that deal with ECL do not contribute to learning but

must be allocated if the instructional procedures demand those resources.

To better understand the relationship between the three components of cognitive load and when

cognitive load is expected to influence learning, I have prepared a demonstration of different cases that I

will discuss now (Figure 2.162.16 on page 5252). When the complexity of the learning material or the task is low,

it does not matter whether the material is poorly designed or presented or the instructional procedures

are non-optimal because there are enough free working memory resources to deal with the additional ECL

(first box in Figure 2.162.16 on page 5252). When the total cognitive load is lower than the available working

memory resources no effects of ECL on the learning performance might be experienced. With more

complex material and higher element interactivity, things are different. When ICL is high but ECL is low,

the total cognitive load might equal the working memory resources so that ECL has no effect. But with an

increase in ECL the total cognitive load exceeds the working memory capacity. Because ECL has always to

be dealt with, all working memory resources that are necessary to deal with ECL have to be allocated

and only the rest can be used to deal with ICL. We remember that GCL is defined as the working memory

resources devoted to deal with ICL. So in this example GCL has declined because ECL was increased,

and learning performance will be affected negatively (second box in Figure 2.162.16 on page 5252). The last

case I want to discuss is the effect of an altered level of motivation. I assume that motivation determines

the overall amount of working memory that is dedicated to learning. With other words, a high level of

motivation leads to all working memory resources are dedicated to learning. If, however, the level of

motivation decreases, less working memory resources are freed for the learning activity. In addition to

the resources that are bound by dealing with the increased ECL now resources are missing because of a

lower level of motivation. As a result, GCL has declined even further and the learner’s performance has

worsened (third box in Figure 2.162.16 on page 5252).

2.3. How to Think About User Behavior – Learner Attributes 50

induce

reduce

Prior Knowledge/
Experience

induce

Element Interactivity

natural complexity

fixed

nonoptimal
instructional procedures

can be eliminated

Intrinsic
Cognitive Load

Extraneous
Cognitive Load

Legend

characteristics of material

characteristics of learner

deal with

Germane
Cognitive Load Total

Cognitive Load

Working Memory
Resources

increase

Motivation

Figure 2.15.: Relationship between element interactivity and intrinsic, extraneous, and germane cognitive
load according to the CLT. Both intrinsic and extraneous cognitive load are determined
by element interactivity and are primarily characteristics of the learning material. Intrinsic
cognitive load is fixed, but the learner’s level of knowledge determines the element size.
Extraneous cognitive load is imposed by the instruction design and can be minimized or
eliminated. Germane cognitive load is independent of the learning material and refers to the
working memory resources allocated for dealing with the intrinsic cognitive load. The overall
cognitive load, as experienced by the learner, is the sum of intrinsic and extraneous cognitive
load, but not of germane cognitive load. Own graphic, based on (Sweller, 20102010).

CLT is a good theory to use as the foundation of a CogIUM, because cognitive load influences learning

performance. Merriënboer and Sweller (20052005, p. 166) state that performance is one assessment dimension

of cognitive load, “because a higher cognitive load often increases the number of errors, and slows down

performance.” Additional dimensions are mental load, which originates from the interaction between

task characteristics and learner characteristics like prior knowledge, and mental effort, which refers to

the “cognitive capacity that is actually allocated to accommodate the demands imposed by the task”. In

addition, they report findings of adaptive e-learning based on assessment of cognitive load. In a first step

the learner’s expertise was assessed, which led to a dynamic selection of the next learning task in a second

step. Expertise was assessed by how much mental effort the learner had to invest to achieve a certain

performance. In several studies adaptive e-learning proved superior to the use of a fixed sequence of tasks.

2.3. How to Think About User Behavior – Learner Attributes 51

No effect of
increased ECL

on GCL

ECL

ECLICL

ICL

ECL

GCL ECL

Components of
Cognitive Load

Working Memory
Resources

ECL

ICL

ICL

ECL

GCL

Influence of
motivation on

working memory

ECL

ICL

ICL

GCL

ECL

ECL

Increased ECL
decreases GCL

GCL ECL

ECL

ICL

ICL

ECL

ECL

ICL

ICL

GCL

ECL

ECL

Legend

Extraneous Cognitive Load Intrinsic Cognitive Load Germane Cognitive Load

Total Cognitive Load Working Memory Capacity Reduced Germane Cognitive Load

Figure 2.16.: Influence of ECL and motivation on GCL for three different cases. For a detailed explanation
see the in-text description. Own graphic, based on (Sweller, 20102010).

2.3. How to Think About User Behavior – Learner Attributes 52

3 Literature Review
This chapter provides an overview of the state of the art and the latest trends in computational cognitive

modeling, model evaluation and model comparison, and measuring cognitive load.

3.1 Computational Cognitive Modeling

This chapter deals with current developments and methods in the field of cognitive architectures and

learner models in Intelligent Tutoring Systems. The presented information may be helpful to better

understand the approach, the procedure and the contribution to the research of this thesis. The literature

review will indicate that the approach of this thesis in this form is unique and represents an extension of

the current body of knowledge.

3.1.1 Cognitive architectures

Taatgen and Anderson (20102010) note that most research o cognitive architectures involves building models

of particular phenomena, and only a smaller portion of research is focused on the architectures itself. One

development is use findings from neuroscience to further refine the cognitive architecture By implementing

the cognitive architectureCT-R as a neural network, it was found that the model could only perform a

single retrieval from declarative memory at a time. This constraint was subsequently introduced in the

standard architecture and moved the ACT-R architecture closer to modeling the limitations on human

cognition. Other approaches try to directly design cognitive architectures at the level of neural networks.

One example is given by the Leabra architecture. Taatgen and Anderson, p. 699 criticize that it takes

“substantial intellectual commitment to learn to understand models of a particular architecture and to learn

to construct models.” In addition, it is infeasible to compare multiple architectures. As a consequence,

modelers often do not use an architecture at all but build cognitive models out of components specifically

designed for the study at hand. However, if the current developments would go one, they express the

hope that the choice of architecture does not imply a strong theoretical commitment, because most

mechanisms that underlie human cognition will be probably included. They make a forecast that the gap

between symbolic and neural networks will be bridged. Finally, they propose the amount of task-specific

knowledge as a measure of simplicity when choosing between different models and architectures.

The most recent overview of the last 40 years of research on cognitive architectures was conducted

by Kotseruba and Tsotsos (20182018). They analyzed a set of 84 architectures, of which 49 are still actively

developed. They estimate the number of existing cognitive architectures to be around 300. They

focused on architectures with at least one practical application and several peer-reviews publications

and mechanisms for perception, attention, action selection, memory and learning. As a first result they

provide a timeline of the 84 cognitive architectures with ACT-R and Soar among the oldest. They present

a taxonomy of the cognitive architectures into the three categories symbolic, emergent, and hybrid.

The hybrid category is further divided into symbolic sub-processing, where sub-symbolic computation is

53

limited to a self-contained module within the architecture, and fully integrated that contains all other

types of hybrids. The majority of cognitive architectures belongs to the hybrid category, including Soar,

“showing the tendency to grow even more”. This finding confirms the prognosis made a decade ago

that cognitive architectures will converge eventually into hybrid architectures (Sh, 20072007; Taatgen and

Anderson, 20102010). Architectures like ACT-R and Soar, which are hybrid, combine symbolic concepts and

rules with sub-symbolic elements such as activation values, spreading activation, stochastic selection

process, and reinforcement learning. The authors discuss in detail the mechanisms that are supported

by the different cognitive architectures with respect to perception, attention, action selection, memory,

learning, reasoning, and metacognition. They conclude with a detailed overview of 900 projects that

were implemented using the 84 cognitive architectures. It is noteworthy that ACT-R and Soar are the

architectures that have by far the most practical applications. Soar was used in equal parts to create agents

for games and puzzles, miscellaneous, and virtual agents, whereas the most work with ACT-R was done

for psychological experiments. With respect to the prsented list of cognitive abilities and phenomena the

authors conclude that “none of the systems we reviewed is close to supporting in theory or demonstrating

in practice even this restricted subset, let alone a set of identified cognitive abilities” and that “most of the

featured architectures cannot reuse the capabilities or accumulate knowledge as they are applied to new

tasks. Instead, every new task or skill is demonstrated using a separate model, specific set of parameters

or knowledge base.” In their discussion they list a range of open research questions and future directions.

The decision to use Soar 9 as the concrete cognitive architecturen this thesis is partly based on this review.

With their “standard model of the mind” Laird, Lebiere, et al. (20172017) extract key aspects of structure

and processing, memory and content, learning, and perception and motor from the synthesis across

three existing cognitive architectures: ACT-R, Sigma, and Soar. They try to give the best consensus given

the community’s current understanding of the mind. Symbols in the standard model are the primitive

elements over which relations an be defined and allow for the creation of complex symbolic structures,

including semantic networks, ontologies, and taxonomies. Non-symbolic information has two roles in

the standard model: to represent quantitative task information and to annotate the representations of

task information to guide how it is processed, that is, to play the role of metadata. The standard model

involves a hybrid combination of symbolic and statistical processing, embodies forms of statistical learning,

including Bayesian and reinforcement learning, and uses significant amounts of parallelism. The core

components of the standard model are perception an motor, working memory, declarative long-term

memory, and procedural long-term memory. The authors summarize and persent the key assumptions

that underlie the standard model of human-like minds and provide an analysis of the extend ACT-R, Soar,

and Sigma agree in theory with the standard model and implement the corresponding capabilities. Their

main finding is that while the architectures of the early-90s showed significant disagreement or a lack of

theory, their current versions are “in total agreement in terms of theory and only substantially differ in

the extent to which they implement perception and motor systems.” They also note that the standard

model remains incomplete regarding metacognition, emotion, mental imagery, direct communication and

learning across modules, and social cognition.

Although the three categories, emergent, symbolic, and hybrid, are the dominant ones, there exist

attempts to build models that use other approaches. Shi et al. (20072007) present their Globally Connected

and Locally Autonomic Bayesian Network (GCLABN) that adopts Bayesian networks to integrate the

3.1. Computational Cognitive Modeling 54

merits of rule-based systems and neural networks. The model is composed of numerous interconnected

and overlapping tiny Bayesian networks to model the overall cognition. It employs a unique knowledge

representation strategy, generates cognition via dynamic oscillation, and provides a white-box architecture

by manipulating symbolic concepts with probabilistic reasoning.

Cognitive architectures, especially Soar, are widely used or considered for realizing agents that

learn how to play games, from simple games such as Tic-Tac-Toe to complex computer strategy games

such as Civilization or Starcraft (Laird, Gluck, et al., 20172017). There has been success with simple games

with limited numbers of objects, but current techniques have not yet scaled up to more complex games.

Complexity dimensions include the number of movable pieces and places, the number and complexity of

rules and their interactions, the responsiveness/speed of gameplay and the number and types of relevant

spatial relations. However, to the best knowledge of the author there are no studies that investigate how

cognitive architectures can be used to model the learner or to derive the learner’s current cognitive state.

Therefore, using Soar 9 to realize a CogIUM to represent the learner’s current cognitive state would be a

contribution to the field.

3.1.2 The student model in Intelligent Tutoring Systems

Classical ITS have four main components: a domain module that represents expert knowledge and

includes definitions, processes, or skills, a student module that represents a student’s mastery of the

domain and contains both stereotypical student knowledge of the domain and information about the

current student, a tutoring module that represents teaching strategies and includes methods for encoding

reasoning about the feedback, and a communication module that represents methods for communicating

between students and computers (Woolf, 20092009). The student model in ITS is equivalent to the CogIUM

in an adaptive system for serious games. A student model in ITS observes student behavior and creates

a qualitative representation of the learner’s cognitive and affective state. The model partially accounts

for student performance like time on task and observed errors. Woolf lists several issues that have to

be considered when building a student model: how to represent student knowledge, how to update

information to infer the student’s current knowledge and how to improve student behavior. She gives

an overview of several knowledge categories along with their typical representations used to model

student and domain knowledge, including semantic nets, rules, constraints, plan recognition, and machine

learning. Techniques to update student models are classified based on their origin: cognitive science or

artificial intelligence. Cognitive science techniques include model-tracing and constraint-based methods,

whereas artificial intelligence techniques include formal logic, expert systems, plan recognition, and

Bayesian belief networks.

Chrysafiadi and Virvou (20132013) conducted a literature review on student modeling approaches that

have been used in the past ten years. The data usually represented in a student model includes knowledge

level, skills, learning preferences and styles, errors an misconceptions, motivation, affective features

such as emotions and feelings, cognitive aspects such as memory, attention, solving, making decisions

and analyzing abilities, critical thinking and communication skills, and meta-cognitive aspects like self-

regulation, self-explanation, self-assessment and self-management. The affective states can be: happy, sad,

angry, interested, frustrated, bored, distracted, focused, and confused. Some of these emotions led students

to an off-task behavior, where students’ attention became lost and they engaged in activities that were

3.1. Computational Cognitive Modeling 55

unrelated to learning. The authors gave a very detailed overview of student modeling approaches, among

them the overlay model, the stereotype model, the perturbation model, machine learning techniques for

automated observation of students’ actions and behavior and for automated induction, cognitive theories,

constraint-based models, fuzzy logic modeling techniques, Bayesian networks for dealing with uncertainty

of student diagnosis, and ontologies for reused student models. Each of these approaches can be used

either alone or in combination with one or more approaches. Chrysafiadi and Virvou presented their

findings in two groups: for studies conducted between 2002 and 2008 and for studies conducted between

2009 and 2012. The most common used student modeling techniques in the years 2002 up to 2007

were overlay and stereotype modeling. Probabilistic models in form of Bayesian student models based

on Bayesian networks became more popular over the next five years. In addition, researchers started to

use hybrid student models, which brought together various features of different techniques of student

modeling, for example Bayesian networks with machine learning algorithms. Regarding blended student

models, Bayesian networks were most often combined with cognitive theories (66.67 %), constraint-based

methods (50 %) and machine learning (25 %). They found that affective student modeling was performed

successfully through the use of cognitive theories and/or Bayesian networks, with an increase in the

adoption of fuzzy logic techniques and Bayesian networks in the development of student models in order

to deal with uncertainty of learning and the student diagnosis process.

A review from Pavlik Jr. et al. (20132013) gave an in-depth overview of different types of student models

and their implementation. They evaluated the different approaches along various dimensions: quantitative

fit, ease of understanding, generality and flexibility, cost of creation, granularity, time scale, and learning

gains in practice.

Truong (20162016) reviewed 51 studies that dealt with the application and integration of learning styles

theories in adaptive e-learning systems. Recent surveys suggested that learning styles models were the

most useful frameworks for adaptive systems development next to previous knowledge and student

background. The author gives an overview of learning style theories and common predictors of student’s

learning styles. Potential sources of data are log files that track users’ actions and interactions with the

system’s interface and users’ history and background data that include static information such as gender,

education majors and ethnicity and culture. In one example a study was able to detect learning styles

by using attributes related to performance assessment such as time spent for certain type of questions,

performance on the test, and time taken to check the questions. Regarding learning styles classification

algorithms, the author has found that again Bayesian networks are among the most common approaches

(second most popular method) next to rules-based methods (most popular). One study in the review

used an educational serious game as target for the application of learning styles in developing adaptive

learning systems. Feldman et al. (20142014) provided empirical evidence that learning styles can be measured

through students’ behaviors when they were playing games.

Another review on student modeling approaches in ITS was done by Kurup et al. (20162016). They

presented yet another technique called Bayesian Knowledge Tracing (BKT), which is a type of student

model used in adaptive tutoring that infers a student’s knowledge from previous responses of a student.

BKT uses four probability factors to calculate the student’s mastery of a skill based on their performance

history: the probability that a student is well versed in that skill, the probability that a student who has

not learned the skill yet will know it after the next exercise, the probability that a student who has not

3.1. Computational Cognitive Modeling 56

learned the skill yet will answer a question correctly, and the probability that a student will answer a

question incorrectly albeit they have the right knowledge. The rest of the paper deals with the challenges

in estimating the parameters for the BKT model.

Because Bayesian methods in the form of Bayesian networks have attracted a lot of attention, Millán

et al. (20102010) dedicated a whole article to an introduction for education practitioners about the basic

concepts and techniques in the context of typical student modeling problems. Bayesian networks can

be used to implement all of the standard types of student models like overlay models, differential

models, perturbation models and so on. The authors start with the definition of a Bayesian network

as a directed acyclic graph (DAG) of random variables and the probabilistic relationships between the

variables. If all joint probability distributions are known, any kind of inference can be performed. The

next step in applying Bayesian networks is to compute the inference in the Bayesian framework, which

results in a posterior probability distribution for each variable. Bayesian networks allow for two kinds

of reasoning: diagnostic and predictive. Diagnosis is the task of identifying the most likely causes given

a set of observations. Prediction, instead, tries to identify the most likely event occurrence given a set

of observations. Another particular powerful aspect of Bayesian networks is that any variable can be

either a source of information, if it can be observed, or object of inference based on other variables in

the network. The authors explain how to derive a Bayesian model and how to define its variables, the

connections between them, the structure of the model, and finally the model’s parameters. Commonly

used variables that represent user features include knowledge, cognitive features such as learning styles,

cognitive and meta-cognitive skills, and affective attributes such as self-image, motivation, and emotional

state. Commonly used evidence variables that represent all directly observable features of student’s

behavior include answers to questions, measurable traits of conscious behavior such as time elapsed, hints

requested, and measurable variables of unconscious response such as eye movement and physiological

data. The authors present a range of standard model structures that can be used to combine the model

variables, among them prerequisite relationships, refinement relationships and granularity relationships.

If time plays an important role in the model, that is when the state of variables change over time, then

dynamic Bayesian networks (DBNs) are the tool of choice. In DBN time is discrete and a separate Bayesian

network is constructed for each step. The last step that is explained by the authors is learning from data

to determine which links between variables should be considered and which should be removed. This

can be done using fully automatic methods or by introducing structural constraints and only learnthe

reminder of the structure along with the parameters. Recent advances in the field of Bayesian networks

are presented in Marcot and Penman (20182018).

One classical example of using dynamic Bayesian networks to model the causes and effects of

emotional reactions was given by Conati and Maclaren (20092009). Their diagnostic model implemented the

OCC theory as theoretical model of affect, which accounts for how emotions are caused by the user’s

appraisal in a given context in terms of the user’s goals and preferences. Their appraisal sub-network

represented 6 of the 22 emotions defined in the OCC model: the pairs joy and distress, pride and shame,

and admiration and reproach. As a test-bed for the model the authors used Prime Climb, an educational

game designed by the EGEMS group at the University of British Columbia to help 6th and 7th grade

students practice number factorization. Data of actual users’ emotions during real-time interactions was

collected directly from students during the interaction. An emotion-report dialog box was permanently

3.1. Computational Cognitive Modeling 57

present on the side of the Prime Climb game window that gave students the possibility to self-report on

their emotional states. As a result, their predictive model of user affect based on the OCC appraisal theory

of emotions could achieve reasonable accuracy on three of the four emotions tested in their study.

hierarchical Bayesian models are close to Bayesian networks in that they are also a probabilistic

framework and that their graphical structure is a directed acyclic graph (Murphy, 20012001). The difference

lies in how they are used: Bayesian networks model dependencies of categorical variables while HBMs are

rather dedicated to parameter estimation with a dedication to Bayesian statistics. Bayesian networks do

not necessarily imply a commitment to Bayesian statistics. Indeed, often frequentists’ methods are used

to estimate the parameters of the conditional probability distributions. Bayesian networks are a useful

representation for HBM, which form the foundation of applied Bayesian statistics. To the best knowledge

of the author there are no studies published that use HBMs to realize student models. Therefore, building

and training a HBM to realize a CogIUM to represent the learner’s current cognitive state would be a

contribution to the field.

3.2 Model Evaluation and Model Comparison

Naturally, what interests us most in a model is how accurate the model can predict new data. This becomes

more important when there are several competing models that explain the observed data. The challenge

is to evaluate a model’s predictive accuracy given only the data used to fit the model, and correcting for

the bias inherent in doing so. We are interested in a model’s predictive accuracy for two reasons: first, to

measure the performance of a model; secondly, to compare models with each other. Our goal in model

comparison is not necessarily to pick the model with the lowest estimated prediction error or to average

over candidate models, but at least to put different models on a common scale. This is important because

models can use completely different parameterizations but predict the same measurements. (Gelman

et al., 20142014)

There are two typical scenarios for model comparison. First, when a model is expanded, it is natural

to compare the smaller to the larger model and assess the benefits gained by expanding the model. The

question then is how much complexity is necessary to fit the data. Secondly, to compare not related models

with each other. In such a setting one is usually not interested in choosing one model over the other. But

it can be useful to be able to compare the fit of the different models to see how the models perform when

considered alone. Later, they might be combined in a larger model as special cases. (Gelman et al., 20142014)

3.2.1 Posterior predictive check

The posterior predictive distribution is a probability distribution over possible values of future data ỹ . To

obtain samples from this distribution, we iterate the following (Lambert, 20182018):

1. Sample θ s ∼ p(θ |y), that is, sample a parameter value from the posterior distribution.

2. Sample ỹi ∼ p(ỹ|θ s), that is, sample a data value from the sampling distribution conditional on the

parameter value from the previous step.

This two-stage process reflects the two sources of uncertainty that we have: the uncertainty in the

parameter value θ s from the posterior distribution p(θ |y) and the uncertainty due to sampling variation

3.2. Model Evaluation and Model Comparison 58

from the sampling distribution p(ỹ|θ s). If the above mentioned steps are repeated a sufficient number

of times, then the resulting distribution of the sampled data approaches the shape of the true posterior

predictive distribution. Sampling is normally required because the high-dimensional integrals involved

are often intractable.

We can use the posterior predictive distribution to discuss the quality and goodness of fit of our

model. But what is meant by a good model? Most certainly, our model will not be unconditionally good in

any aspect, but good at reproducing some aspects of the real world, and worse at others. The model was

built with a particular purpose in mind and a good model is one that can account for the variation in data

that is in line with this purpose. The posterior predictive distribution is used in Bayesian data analysis

to test whether the model can replicate the observed patterns in the data. If the data comes from an

experiment and represents subjective behavior, then the model should be able to replicate the behaviors

that are most important. Specifically, the posterior predictive distribution is used to generate simulated

data, which then is compared to the real observed data. These comparative tests are what constitute

posterior predictive checks. The samples drawn from the posterior predictive distribution are interpreted

as data samples that might be collected in the future. A graphical visualization is a great way to test te

performance of a model, but may become cumbersome if many of these tests across a large number of

replicates have to be conducted. A graphical visualization can only be one step in the process of model

evaluation. (Lambert, 20182018)

However, the replicated data y rep can be used for the calculation of Bayesian p values. Let y be

the observed data and θ be the vector of parameters. y rep denotes the replicated data that could have

been observed, wheres ỹ is any future observable value or vector of observable quantities. The posterior

predictive distribution of y rep, given our current state of knowledge, is defined as

p(y rep|y) =
∫

p(y rep|θ) · p(θ |y) dθ . (3.1)

Discrepancies between the model and data can be measured by defining test quantities. A test quantity,

or discrepancy measure, T (y,θ) is a scalar summary of parameters an data that is used as a standard

when comparing data to predictive simulations. For example, the lack of fit of the data with respect to the

posterior predictive distribution can be measured by tail-area probability, or p-value, of the test quantity.

The Bayesian p-value is defined as the probability that the replicated data could be more extreme than

the observed data, as measured by the test quantity (Gelman et al., 20142014):

pB = Pr(T (y rep,θ)> T (y,θ)|y). (3.2)

Further details about Bayesian model can be found in Gelman et al. (20142014) and Lambert (20182018)

3.2.2 RMSE and MAE

The most common scoring function in literature on prediction is the the squared error, which is an example

of a point prediction, where a single value is reported as a prediction of the unknown future observation

3.2. Model Evaluation and Model Comparison 59

(Gelman et al., 20142014; Pelánek, 20152015). The simplest version of the mean squared error (MSE) is given by

(Gelman et al., 20142014, p. 167)

MSE=
1

n

n
∑

i=1

(yi − E (yi|θ))2, (3.3)

which calculates the squared error between the observed data points yi and the predictions of the model

(yi|θ). The root mean squared error (RMSE) is simply the square root of the MSE and is often used to

obtain an error that has the same scale as the predicted variable y . The MSE has the advantage of being

easily computed and directly interpretable, but the disadvantage of being less appropriate for models that

are far from the normal distribution (Gelman et al., 20142014). The mean absolute error (MAE) is given by

MAE=
1

n

n
∑

i=1

|yi − (yi|θ)| , (3.4)

but is not proper score, as mentioned by Pelánek (20152015).

The point predictions do not use the full uncertainty over the unobserved data ỹ. Probabilistic

prediction aims at reporting inferences about ỹ that take the full uncertainty over ỹ into account.

Measures of predictive accuracy for probabilistic prediction are called scoring rules. Scoring rules are

often quadratic, logarithmic, or zero-one scores. (Gelman et al., 20142014)

The log predictive density or log-likelihood is a local and proper scoring rule and is a standard for

evaluating probabilistic predictions.

3.2.3 WAIC and LOO

The derivation of the equations presented in this section as well as the notation is based on Gelman

et al. (20142014) and Vehtari et al. (20162016). The logarithmic score for predictions is the log predictive density,

also called the log-likelihood, logp(y|θ). The log predictive density plays an important role in model

comparison because of its connection to the Kullback-Leibler divergence (KL). In the limit of large sample

size, the model with the lowest KL has both the highest expected log predictive density and the highest

posterior probability. Therefore, the log predictive density seems to be the right measure for estimating

the predictive accuracy and overall model fit.

What would be the ideal measure of a model’s fit? This would be its out-of-sample predictive

performance for new data produced from the true data-generating process, which we all external

validation. Consider a true model f , observed data y , which is a single realization of the data set y from

the distribution f (y), and ỹ as future data or alternative data sets. The out-of-sample predictive fit for a

new data point ỹi using the logarithmic score is then defined by,

log ppost(ỹi) = log Epost (p(ỹi|θ)) = log

∫

p(ỹ|θ) · ppost(θ) dθ . (3.5)

3.2. Model Evaluation and Model Comparison 60

The term ppost(ỹi) in equation (3.53.5) is the predictive density for ỹi induced by the posterior distribu-

tion ppost(θ) = p(θ |y).

However, as the future data ỹi are themselves unknown, we work with the expected out-of-sample

log predictive density

elpd= expected log predictive density for a new data point (3.6)

= E f

�

log ppost(ỹi)
�

=

∫

(log ppost(ỹi)) · f (ỹi) d ỹ . (3.7)

The data distribution f is in general unknown, whereas we always would have some ppost. In practice,

the true parameter θ is also not known, so we cannot know the log predictive density log p(y|θ). We

would like to work with the posterior distribution ppost, and summarize the predictive accuracy of the

fitted model to data by

lppd= log pointwise predictive density (3.8)

= log
n
∏

i=1

ppost(yi) =
n
∑

i=1

log

∫

p(yi|θ) · ppost(θ) dθ . (3.9)

How can this predictive density be computed in practice? Once we have a posterior distribution, we

can evaluate the expectation using draws from ppost(θ), the usual posterior simulations, which we label

θ s, s = 1, . . . , S:

computed lppd=
n
∑

i=1

log

1

S

S
∑

s=1

p(yi|θ s)

!

. (3.10)

The computed log pointwise predictive density of equation (3.103.10) is only an approximation of the

true value from equation (3.83.8), but we usually assume that the number of simulation draws S is large

enough to fully capture the true posterior distribution. However, equation (3.103.10) is an overestimate of

(3.63.6) and different criteria try to correct for this bias to get reasonable estimates.

For historical reasons, measures of predictive accuracy are referred to as information criteria and are

typically defined based on the deviance, the log predictive density of the data given a point estimate of

the fitted model and multiplied by −2: −2 log p(y|θ̂). When using point estimates θ̂ and the posterior

distribution ppost that was fitted to the data y , the out-of-sample predictions will typical be less accurate

than implied by the within-sample predictive accuracy, that is, we overestimate the accuracy by relying

only on the fitted data.

In addition, when different models are compared that differ in size or effective size, it is important to

male some adjustment for the natural ability of a more complex and flexible model to fit data better, even

if only by chance.

3.2. Model Evaluation and Model Comparison 61

Watanabe-Akaike or widely available information criterion

We have seen that the within-sample predictive accuracy for existing is a naive estimate of the expected

log predictive density for new data. We would like to work with the computed lppd (3.103.10), but, in general,

overestimate (3.63.6). The logical next step is to adjust this estimate and correct the bias. Formulas such

as AIC, DIC, and WAIC give approximately unbiased estimates of elpd by correcting the computed lppd

for the numer of parameters, or the effective number of parameters, being fit. Another approach uses

cross-validation, where the model is fitted to training data and its predictive accuracy is evaluated on a

holdout set. Leave-one-out cross-validation (LOO-CV) requires n fits except when computational shortcuts

can be used to approximate the computations.

I will focus on the criteria WAIC and LOO-CV, because these are the criteria used in the model

comparison of chapter 55 ImplementationImplementation (page 103103).

Watanabe-Akaike or widely available information criterion (WAIC) is a fully Bayesian approach for

estimating the out-of-sample expectation elpd (3.63.6), starting with the computed lppd (3.103.10) and then

adding a correction for the effective number of parameters to adjust for overfitting.

There are two corrections proposed in the literature. Both are based on pointwise calculation and

can be viewed as approximations to cross-validation. The first approach uses a difference

pWAIC1 = 2
n
∑

u=1

�

log
�

Epostp(yi|θ)
�

− Epots (log p(yi|θ))
�

, (3.11)

which can be computed from simulations by replacing the expectation by averages over the S posterior

samples θ s:

computed pWAIC1 = 2
n
∑

u=1

log

1

S

S
∑

s=1

p(yi|θ s)

!

−
1

S

S
∑

s=1

log p(yi|θ s)

!

. (3.12)

The second measure uses the variance of individual terms in the log predictive density summed over

the n data points:

pWAIC2 =
n
∑

u=1

varpost (log p(yi|theta)) . (3.13)

Again, to calculate (3.133.13) we compute the posterior variance of the log predictive density for each data

point yi, that is, V S
s=1 log p(yi|θ s), where V S

s=1 represents the sample variance. Summing over all the data

points yi gives the effective number of parameters:

computed pWAIC2 = 2
n
∑

u=1

V S
s=1 (log p(yi|θ s)) . (3.14)

3.2. Model Evaluation and Model Comparison 62

Either pWAIC1 or pWAIC2 can be used to correct the bias:

̂elppdWAIC = lppd− pWAIC. (3.15)

Gelman et al. recommend pWAIC2 because it is asymptotically closer to LOO-CV, which seems also to

be the case for practical applications. The value reported for WAIC is usually −2 times the expression

(3.153.15) so as to be on the deviance scale.

Compared to other information criteria like AIC and DIC, WAIC hs the desirable property of averaging

over the posterior distribution rather than conditioning on a point estimate. WAIC works also with

singular models and thus is especially helpful for models with hierarchical and mixture structures in

which the number of parameters increases with the sample size.

Leave-one-out cross-validation

In Bayesian cross-validation, the data are repeatedly partitioned into a training set ytrain and a holdout set

yholdout. The model is then fit to ytrain, yielding a posterior distribution ptrain(θ). Afterwards, the model is

evaluated using an estimate of the log predictive density of the holdout data,

log ptrain(yholdout) = log

∫

ppred(yholdout|θ) · ptrain(θ) dθ . (3.16)

As usual, we can approximate the posterior distribution ptrain(θ) = p(θ |ytrain) by S simulation draws

θ s and calculate the log predictive density as log
�

1
S

∑S
s=1 p(yholdout|θ s)

�

. Leave-one-out cross-validation

(LOO-CV) is the special case with n partitions in which each holdout set represents a single data points yi.

The analysis for each of the n data points yields n different inferences ppost(−i), each summarized by S

posterior simulations, θ is.

The Bayesian LOO-CV estimate of out-of-sample predictive fit is

lppdloo-cv =
n
∑

i=1

log ppost(−i)(yi), calculated as
n
∑

i=1

log

1

S

S
∑

s=1

p(yi|θ is)

!

. (3.17)

The effective number of parameters can be computed as

ploo-cv = lppd− lppdloo-cv. (3.18)

Cross-validation is like WAIC in that it requires data to be divided into disjoint, ideally conditionally

independent, pieces. Regarding computational efficiency, cross-validation is the most expensive approach

except in settings where shortcuts are available to approximate the distributions ppost(−i) without having to

re-fit the model each time. If no shortcuts are available, a common practice is to use k-fold cross-validation

where data is partitioned in k sets. A common choice for k is 10. There exist different extensions of the

3.2. Model Evaluation and Model Comparison 63

computation time & complexity

ap
pr

ox
im

at
io

n
 q

ua
lit

y

LOO-CV
PSIS

AIC

DIC

WAIC

LOO-CV

mor
e B

aye
sia

n m
eth

ods

Figure 3.1.: Different measures to evaluate the out-of-sample predictive accuracy of a model as a function
of computational time and complexity and approximation quality (based on Lambert, 20182018,
p. 235). The more Bayesian a method, the higher the approximation quality, but for the cost
of a higher complexity and computation time.

basic LOO-CV that improve the efficiency of the computation, like using Pareto-smoothed importance

sampling (PSIS) (Vehtari et al., 20162016).

Predictive accuracy measures are useful in parallel with posterior predictive checks to see if there are

important deviations of the model’s predictions from the observed data. According to Lambert WAIC and

LOO-CV are the best choices for predictive accuracy measures, as they are fully Bayesian (Figure 3.13.1). For

both programming languages Python and R there exist packages that allow the computation of estimates

for LOO-CV and WAIC using existing simulation draws from the posterior.

3.2.4 Bayes factor

The ratio of marginal likelihoods for two models is known as the Bayes factor, and can also be thought

of as the ratio of posterior to prior odds (Shiffrin et al., 20082008). The Bayes factor is part of Bayes’ rule to

decide between two models H1 and H2, given the observed data D (Gelman et al., 20142014)

p(H2|D)

p(H1|D)
=

p(y|H2)

p(y|H1)
︸ ︷︷ ︸

=: Bayes factor

×
p(H2)

p(H1)
=

∫

p(y|θ2, H2)p(θ2|H2) dθ
∫

p(y|θ1, H1)p(θ1|H1) dθ
×

p(H2)

p(H1)
, (3.19)

where the left-hand side is the ratio of the posterior probabilities for each of the models. To compute

(3.193.19) we must calculate a term known as Bayes factor and the ratio of the prior preferences for each of

the models.

The main problem with calculating the Bayes factor is to compute the marginal likelihood of

denominator for each model, p(data|modeli). There exist methods to calculate marginal likelihoods, such

as Annealed Importance Sampling (Neal, 19981998). Another concern is the sensitivity of the Bayes factor

3.2. Model Evaluation and Model Comparison 64

to the particular choice of prior distribution (Lambert, 20182018). (3.193.19) is only defined when the marginal

density of y under each model is proper. The goal in using the Bayes factor is to decide for a single model

Hi or average over a discrete set using their posterior probabilities p(Hi|y).

3.2.5 Hierarchical models

All the previous mentioned methods have important limitations in their ability to address the basic goals

of modeling (Shiffrin et al., 20082008). Predictive accuracy measures will usually give some indication of likely

parameter values, and give a basis for inferring which model will predict future data better. However,

they do not provide a reasoning of how and why the models succeed and fail to various degrees and do

not help to drive subsequent theorizing. Shiffrin et al. suggest that hierarchical methods, and HBMs in

particular, are a better wa to approach model development and evaluation in the cognitive sciences. They

demonstrate the power and flexibility of HBMs for evaluating models using two worked examples. They

first develop different models that are build on each other and finally combine the two most promising

models in one model (Figure 3.23.2). The model entails the full hierarchical model as well as the simplified

version and uses a latent binary variable z to choose between the models. The posterior sampling of z,

counting the proportions of times it chose model one over model two, then amounts to an evaluation of

the relative usefulness of each model. Shiffrin et al. (20082008, p. 1281) conclude that hierarchical Bayesian

methods offer “very general and powerful capabilities for developing, evaluating, and choosing between

models of cognition.”

Figure 3.2.: Graphical model for comparing a full hierarchical model of retention (on the left) to a simpler
version that assumes no individual differences in the β parameter (on the right) (from Shiffrin
et al., 20082008, p. 1272). The model uses a latent model indicator variable z to move between the
models. The final posterior distribution over z can be directly interpreted as a Bayes factor.

3.2. Model Evaluation and Model Comparison 65

3.3 Measuring Cognitive Load

Cognitive load as described by the Cognitive Load Theory (CLT) is a theoretical construct that describes

internal processes of information processing that cannot be observed directly. However, the usage of

cognitive load to inform the design of instructions and its usage as latent variable in models to predict

student’s performance and cognitive states requires valid and reliable instruments for assessing cognitive

load.

Brünken et al. (20032003) classify existing instruments along two dimensions: objectivity and causal

relation. Objectivity describes whether the instrument uses subjective, self-reported data or objective

observations of behavior, psychological conditions, or performance. The causal relation dimension descries

whether the relationship between the phenomenon observed by the instrument and the actual attribute of

interest is a direct or indirect relationship. Thus there are four areas in this two dimensional space of

instruments. The area of subjective and indirect measures include self-reported invested mental effort.

The area of objective and indirect measures include physiological measures, behavioral measures and

learning outcome measures. The area of subjective and direct measures include self-reported stress levels

and self-reported difficulty of materials. The last area of objective and direct measures include brain

activity measures and dual-task performance. The authors reported that indirect, objective measures

were the most common methods of investigating cognitive load effects. These are performance outcome

measures and knowledge acquisition scores. Typical studies in this area compare two or more different

variants of multimedia instructions of the same material, that are assumed equal with regard to their

ICL, but differ with respect to ECL. It is hypothesized that learners in the condition with less ECL have

higher knowledge acquisition scores. Other indirect, objective measures include time-on-task, navigation

behavior, navigation errors, and orientation problems such as lost-in-hyperspace. The authors presented

experimental evidence the dual-task approach as a direct and objective measure of cognitive load in

multimedia learning. They used a visual secondary reaction time task for which, in accordance with

the CLT, reaction times were significantly faster for th audiovisual primary task than for the visual-only

primary task condition.

In the dual-task paradigm a learner is required to perform two tasks simultaneously. The assumption

is that the secondary task shares working memory resources with the primary task and thus, as the

primary tasks becomes more loading, performance in the secondary task drops. Dual-task measures can

be conducted either as measuring accuracy and response times in an observational task that needs to

be carried out during the primary task or as performance measures in a secondary task during learning.

Dual-tasks measures have the advantage of being objective, but the risk of disturbing the learning process

by themselves (Klepsch et al., 20172017).

DeLeeuw and Mayer (20082008) analyzed the sensitivity of three commonly used techniques for measuring

cognitive load: response time to a secondary task during learning, effort ratings during learning, and

difficulty ratings after learning. They used a secondary visual monitoring task in which learners were

asked to detect a periodic color change and conducted two experiments. They found that each of the

three measures was sensitive mainly to one aspect of cognitive load. Response times were most sensitive

to ECL, effort ratings during learning were most sensitive to ICL, and difficulty ratings after learning were

most sensitive to GCL. These findings also provide evidence for the triarchic theory of cognitive load.

3.3. Measuring Cognitive Load 66

The most popular scale for measuring total cognitive load is a rating scale developed by Paas (19921992).

The scale consists of one item with a 9-point Likert scale, ranging from very, very low mental effort (1) to

very, very high mental effort (9). Typical item wordings are “I invested ... mental effort” or “my invested

mental effort was” A problem with that scale is that it does not allow to differentiate between true

variance and measurement error (Klepsch et al., 20172017).

Rubio et al. (20042004) evaluated three multidimensional subjective workload assessment instruments:

NASA Task Load Index (TLX), the Subjective Workload Assessment Technique (SWAT), and the Workload

Profile. The NASA TLX by Hart and Staveland (19881988) uses six dimensions to assess mental workload:

mental demand, physical demand, temporal demand, performance, effort, and frustration and 20-step

bipoplar scales to obtain ratings for these dimensions. A score from 0 to 100 is obtained on each scale.

A weighting procedure is used to combine the six individual scale ratings into a global score. A paired

comparison task is required to be performed prior to the workload assessment. The SWAT by Reid and

Nygren (19881988) is a subjective rating technique that uses the three dimensions of time load, mental

effort load, and psychological stress load to assess workload. The application of SWAT is done in three

steps. First, an operator sorts 27 cards with all possible combinations of three levels of each of the three

dimensions into the rank order that reflects their perception of increasing workload. Second, an actual

rating of workload is performed. Third, each three-dimension rating is converted into numeric scores

between 0 and 100 using the interval scale developed in the first step. The Workload Profile by Tsang

and Velazquez (19961996) asks subjects to provide the proportions of attentional resources used after they

had experienced all of the tasks to be rated. The Workload Profile uses the eight workload dimensions

perceptual/central processing, response selection and execution, spatial, processing, verbal processing,

visual processing, auditory processing, manual output, and speech output. Subjects write in each cell

on the rating sheet a number between 0 and 1 to represent the proportion of attentional resources they

belief was used in a dimension for a given task. Rubio et al. found that WP was the instrument that had

the highest sensitivity. NASA-TLX and SWAT had similar sensitivities, with NASA-TLX being slightly more

sensitive than SWAT.

Charles and Nixon, 20192019 give an overview of 58 studies that used physiological measures to measure

and predict mental workload. The included physiological measures are electrocardiographic, respiratory,

dermal, blood pressure, and ocular.

Leppink et al. (20132013) developed a new instrument to measure all three components ICL, ECL, and

GCL of the CLT in complex knowledge domains. Their questionnaire consists of 10 items, which were

tested in the domain of statistics. The questionnaire includes three items on ICL, three items on ECL, and

four items on GCL. However, the could not find a positive correlation between items that are supposed to

measure GCL and learning outcomes.

Based on the previous attempts, Klepsch et al. (20172017) developed and evaluated two self-report

measures that treat the different aspects of cognitive load in different ways. The questionnaire that

measures ECL and ICL evaluate the inherent complexity and the design of the learning material as it was

perceived by the learner. Their revised questionnaire from the second study showed that all three scales

for ICL, ECL, and GCL had satisfying reliability and validity scores. The developed questionnaire is not

specific and only needs adoption based on the learning material. The authors state that their questionnaire

3.3. Measuring Cognitive Load 67

is easy to apply and fit to each content, especially for short interventions. For longer interventions and

complex learning material, the authors recommend to apply the questionnaire multiple times.

3.3. Measuring Cognitive Load 68

4 Concept
This chapter presents the main conceptual ideas for realizing cognitive intelligent user model both with

cognitive architectures and hierarchical Bayesian models. First, a general discussion is held on possible

interactions between a learner and an adaptive system that is based on a cognitive user model. Afterwards,

interaction patterns for the serious game Lost Earth are analyzed and presented in a systematic way. The

next section presents the observable variables that were derived from the interaction patterns. The main

contribution of this chapter us to be found in last section, in which the concepts for realizing cognitive

user models are presented. It will be explained why the use of Soar was discontinued and why HBMs

were a better tool for the purposes of this thesis.

4.1 Interaction Between Learner and Cognitive User Model

What is the role of a cognitive user model? The learner model in the four-process adaptive cycle of (Shute

and Zapata-Rivera, 20122012) builds a connection between the captured user data and the presented learning

material that is suitable for the learner. The learner model should allow for a dynamic assessment of

the learner’s current state. A cognitive user or learner model is a model that can make statements about

the learner’s cognitive state, that is, statements about their mental actions and processes that deal with

knowledge acquisition and understanding. In this section, I will describe the interaction between the

user who plays a serious game and the adaptive system that uses a cognitive user model which tries to

infer the user’s current cognitive state. For the remainder of this thesis, I will use the acronym CogIUM to

refer to the learner model or cognitive user model, respectively. Please be aware that CogIUM is also the

name of the Python package developed for this thesis. Here, CogIUM only refers to a general and abstract

cognitive user model and not to a particular implementation. In addition, I will use the words player,

learner, and user interchangeably, because in the context of educational serious games and e-learning, a

user of such a system is always a player and, at the same time, a learner.

One general purpose of a CogIUM is to derive the right time for the system to intervene or react to

the user with adaptive measures (Figure 4.14.1 on page 7171). Given any educational serious game, the player

is always confronted with a certain kind of task or challenge they have to complete. At any given point in

time the player is in a certain state determined by the player’s current state and the state of the game.

From their current state they can choose between several actions that are offered by the game to advance

the current game level. Some of these actions lead to states that are closer to a desired goal state, normally

the end of the current game level, while others will turn out to be dead ends or, worse, might lead to a

failure of the current task. Another possibility is that certain actions will lead to undesirable emotional

states for the player like an ongoing experience of frustration or boredom. The CogIUM can be thought of

as a mirror image of the learner’s situation. The model knows about the learner’s current position in the

state space, it knows about the learner’s possible actions and where these actions will lead them and it

knows about the learner’s current cognitive state. The cognitive state of the learner is represented in the

CogIUM by a set of cognitive variables. The model’s knowledge about the learner is updated iteratively

69

with every user interaction. The model’s knowledge about the learner can be leveraged to guide the player

through the problem space towards a goal state while avoiding states that are detrimental for the player.

There are several possibilities how an adaptive system based on a CogIUM can react to user interac-

tions:

Monitoring The model can register the interaction and learn about how the interaction is correlated

with changes in the cognitive variables. Did the interaction lead to a change in the

affective state? Did the interaction lead to an unfavorable state which could have been

avoided by another, better, option? For example the player might have repeatedly tried

to execute a certain game functionality but failed due to unfulfilled requirements, which

they are not aware of and that increases the player’s frustration.

Feedback The system can give feedback before the interaction takes place. This requires the model

to infer what the player is intended to do next. In this scenario the model might be

able to warn a player to not execute an action the system believes to be imminent and

harmful for the player’s progress or learning success. For example the player might run

out of resources or time and the system can help the player in completing the current

task with the remaining resources or time available.

The system can give feedback after the interaction took place. This could be feedback for

an interaction that the model thought impossible given the learner’s estimated skill level

or feedback for an interaction that led to an unfavorable state. Encouraging feedback

can motivate the player to go on with the next challenge. Other types of feedback might

help the learner to better internalize a concept and to avoid the interaction the next

time. For example the player might have failed the mission because they exceeded the

permitted time or resources for that mission. In hindsight, the system can give feedback

to the player’s performance and help identify actions that the player did not take but

should have or did take but should have not.

The system can give feedback on player’s command. In this case the systems behavior

is reactive. When asked for assistance by the player, the model analyzes all knowledge

about the learner’s current and previous states and tries to find an answer to the player’s

request with maximum benefit for the player. For example the player might ask how

to solve a particular problem or what the next steps are. The system can answer this

question with its domain knowledge and knowledge about an ideal or expert solution as

well as with its knowledge about the player.

Adaptation The system can adapt game features to meet the player’s needs. Based on the previous

interactions and the inferred cognitive state of the player, the model might signal that

some of the cognitive variables are about to exceed or have already exceeded a threshold.

For example the model might infer from the user’s interactions that the user’s level of

attention is too low to proceed with the game. Then the system might suggest a pause or

insert a rest phase before the next challenge.

Role
Assignment

The system can assign the player to a certain role or group and adjust the game play in

accordance to the needs of the assigned group. This requires the model to have data

4.1. Interaction Between Learner and Cognitive User Model 70

about several different users and detect similarities between them. Or the model has a

build-in distinction of players. For example the model might have learned to distinct

players according to different learning styles. When the model has gathered enough

information about a new player to assign them to a learning style, the system can adjust

the game play and present the learning material in a way that is most appropriate for

learners with this learning style.

Possible interactions Chosen / Previous interaction

Attention

Forgetfulness

Knowledge

Planing

Difficulty

Workload

Emotions

Learning style

Expert

solutionCurrent

state

Current

state

Goal

state

Goal

state

Future

state

Future

state

Future

state

Feedback

Suggestions

Help

Scenario changes

Feedback

Entity state data

Game state data

Interaction data

Current

state

Current

state

Goal

state

Goal

state

Future

state

Future

state

Future

state

Current

state

Goal

state

Future

state

Future

state

Future

state

Current

state

Goal

state

Future

state

Future

state

Future

state

Impasse / ObstacleImpasse / Obstacle

Figure 4.1.: Interaction between a user and an adaptive system that is based on a cognitive user model.
Given the user is in a certain state, they have a range of actions to choose from (dashed arrow).
Some actions lead to undesirable states (red bar) while others lead closer to the goal state
(green node). The CogIUM can be seen as a mirror image of the player’s situation. The CogIUM
has domain knowledge, knowledge about an ideal or expert solution and knowledge about
the user’s current cognitive state represented by a set of cognitive variables. The CogIUM
has access to entity state data, game state data, interaction data, and the history of user’s
previous actions. After a user has executed an action (solid arrow), the adaptive system can
react to it, for example with feedback, suggestions, or help, and bring the user back on a path
that leads to the goal state. Own graphic, based on Sottilare and Gilbert (20112011).

This overview of possible interactions between a user and an adaptive system that is based on a

cognitive user model provides a framework for the search of possible approaches to realize CogIUMs. It is

not to be expected to find an already existing user model or to build a new user model that can infer all

listed cognitive variables or that supports all listed interaction types. But it should, in principle, allow for

an adaptive system to choose adaptive measures at the right time based on users’ interactions. The next

section will have a closer look at the educational serious game Lost Earth, which is the digital game the

analysis of this work is based on. I will analyze and characterize the interaction patterns necessary for

4.1. Interaction Between Learner and Cognitive User Model 71

modeling the game with Soar 9 and derive observable variables that are necessary for modeling the game

with HBMs.

4.2 Interaction Patterns for Lost Earth

Lost Earth 230711 is a serious game based on the principles of game-based learning. The game offers a

fictional world and story while integrating learning objectives into the gameplay. In Lost Earth the player

follows the character Alex, who is part of a rebel organization in the year 2307. The goal of the game is

to free all human colonies from a vicious cult, that took over control after a self-induced disaster on Earth.

The main mean of transportation and center of the game is the Ark (Figure 4.24.2 on the following page), a

space ship that travels throughout the galaxy. From here the player can start new missions and begin the

liberation of the colonies.

The learning domain of Lost Earth is about image interpretation and supports image interpreters in

gaining a basic knowledge in interpreting and analyzing aerial and satellite imagery, in understanding the

process of Reconnaissance-Cycle, and the differences of visual, infrared, and radar sensors.

Lost Earths has two types of missions: reconnaissance and deployment. In reconnaissance missions

the player has to analyze original imagery according to the problem and task of the mission giver, to

annotate and align imagery, to deliver reports, and answer multiple choice questions (Figure 4.54.5 on

page 7575). With progress in gameplay the player has to learn about considering the influences of weather

and technology. Deployment missions deal with the deployment and control of sensors and illustrate

advantages and disadvantages of sensors and platforms. The gameplay is turn-based and uses a genre

combination of the 4X-strategy and adventure. 4X stands for explore, expand, exploit and exterminate

(Figure 4.34.3 on page 7474).

The game is currently ported from the Havoc game engine to the Unity game engine. Simultaneously,

a game engine adapter for the ELAI framework is developed to collect user data as xAPI statements from

the game. An early prototype of the port was used as educational serious game for this thesis. Therefore,

when I write about Lost Earth, without any number, I refer to the prototype version that was used for the

analysis.

Every mission in Lost Earth follows the same scheme: first, acquiring the mission along with a briefing

(Figure 4.44.4 on page 7474), second, choosing an appropriate optical sensor, third applying the sensor under

consideration of the weather conditions (Figures 4.64.6 and 4.74.7 on page 7575 and on page 7676), and fourth,

processing the acquired image data (Figure 4.54.5 on page 7575). Every successful mission ends with a detailed

mission report and mission score (Figure 4.84.8 on page 7676). The scenarios focus on this sequence of steps.

I analyzed the basic user interactions relevant for advancing the mission and summarized the core

game play in an activity diagram (Figure 4.94.9 on page 7777). The diagram also shows important interactions

that might reveal some information about the user’s cognitive state. Did the player understand the

mission requirements or did they miss something? Did the player read the briefing, was it helpful or

rather confusing? Did the learner understand the influence of the weather on mission success and type of

sensor? Did they adjust the number of delay rounds according to the information of the weather console?

If not, what was missed? When the mission failed, was it due a time limit or due to inappropriate weather

1 https://www.iosb.fraunhofer.de/servlet/is/58015/https://www.iosb.fraunhofer.de/servlet/is/58015/

4.2. Interaction Patterns for Lost Earth 72

https://www.iosb.fraunhofer.de/servlet/is/58015/

Figure 4.2.: Side face of the Ark. From here the player can visit the different decks of the Ark.

conditions for the selected sensor? Did the learner know how to fill out the report, were they able to

correctly use the external application ViLand?

Besides these questions directly coupled with certain user interactions, I assumed that the user’s

cognitive state directly affects the user interactions. If the experienced difficulty of the mission is too

high, a player have more failed attempts. If there is too much information, maybe in addition poorly

presented, the player will need more time to process all information and gather the relevant information,

which might lead to an increase in the number of opened dialogues. Thus I tried to come up with a set of

observable variables that could be reported by xAPI statements. In general, xAPI statements can report

any user action that is done by the user, with additional information provided in the context field of the

statement (see Section 2.22.2 on page 4343). With the final set of observable variables I tried to focus on

generalization rather than specificity. The chosen variables should be as broadly applicable as possible

to allow for transferring the work of this thesis to other domains and games. This is the reason for not

considering atomic interactions like a single mouse click or key stroke.

The next sections presents the set of observable variables that can be captured by xAPI statements

from the game Lost Earth.

4.2. Interaction Patterns for Lost Earth 73

Figure 4.3.: 4X-strategy part of the game. In Lost Earth 2307, the player can explore the galaxy, expand
their influence by liberating colonies, exploit and manage resources, and compete against
opponents.

Figure 4.4.: Mission list panel. List currently available missions with a short description, requirements of
resources and constraints. The player can get further instructions by reading the briefing.

4.2. Interaction Patterns for Lost Earth 74

Figure 4.5.: Reconnaissance mission. ViLand, a training system for imagery, is used by the player to analyze
imagery and create the reports

Figure 4.6.: Deployment of sensor and platform. After choosing an appropriate sensor and platform, the
player can launch the platform. They can decide whether to start the platform with or without
a start delay to account for weather conditions.

4.2. Interaction Patterns for Lost Earth 75

Figure 4.7.: Weather console. The console informs the player about the weather forecast on the target
planet.

Figure 4.8.: Mission report and summary. The mission success depends on the quality of the filed report.
The player’s performance is measured as overall score which is ratio of correctly reported items.
This score influences the moral of the deployed troops.

4.2. Interaction Patterns for Lost Earth 76

Figure 4.9.: Basic activity diagram for Lost Earth. The player can either be on the bridge or in the hangar.
Most actions are only available during a mission. When a mission failes, or after the player
received the mission summary, they have a chance to retry.

4.2. Interaction Patterns for Lost Earth 77

4.2.1 Identify the data – first step of Bayesian data analysis

Three categories of observable variables were identified: general performance measures, domain-specific

measures, and game-specific measures (Table 4.14.1). The main focus lies on the first two categories, which

will be used in the Bayesian approach as observable variables the descriptive model tries to explain.

Table 4.1.: A set of observable variables that can be captured by xAPI statements from the game Lost
Earth. A description of the variables is given in the text.

Name Level Variable Type Unit Domain

task success performance k binary - {0, 1}
mission score performance s discrete - [0, . . . , maxitems]
mission time performance t continuous minutes or seconds R≥0

required rounds domain nrnd discrete - [1, . . . , maxrounds]
required hints domain nhnt discrete - [0, . . . (
location changes domain nloc discrete - [0, . . . (
dialogues domain ndia discrete - [mindialogues, . . . (

detours game ndet discrete - [0, . . . (

General performance measures are mostly domain-independent and can be measured in any appli-

cation. Task success k describes the success of a player for a given task and is either true or false. In

Lost Earth, such a task is the deployment of a sensor in the target system, which can fail if the player

has not correctly considered the weather conditions or has exceeded the number of rounds available for

this mission. Mission score s is the overall score of the player for the given mission, but it applicable

to any game and any learning task, because it is a simple accuracy measure that reflects the number of

errors the player made. In Lost Earth this number lies between zero and the maximal number of items the

player had to report for a given mission. The score from Lost Earth can be normalized by dividing the

overall score by the maximum score for this mission, so it becomes comparable across missions and across

different applications. Mission time t is the amount of time it took the player to finish the mission, but is

applicable again to any domain or learning task by measuring the time the learner needs to finish a given

task. Mission score and mission time can be captured when the mission report and the mission summary

are generated by the game. Task success can be captured when the result of the sensor deployment

is generated by the game. Each of these three are specific triggered game events and therefore easily

captured by xAPI statements.

Domain measures are domain-dependent but applicable to any game of that domain that supports

this feature. For example all strategy games use resources of some kind and all turn-based strategy games

have a measure of rounds. Required rounds nrnd describes the number of rounds the player needed to

finish the mission. Because this number is dependent on the number of deployment delay rounds the

player has chosen in the select and task sensor panel, required rounds is calculated by the total number of

rounds minus the chosen deployment delay rounds. Whenever the player exceeds the maximum number

of rounds assigned to this mission the mission fails automatically. Although the calculation is specific

4.2. Interaction Patterns for Lost Earth 78

for Lost Earth, an analogous variable can easily be measured in similar games, where it might be the

number of days, the number of turns, the number of steps, and so on. Required hints nhnt is the number

of hints the player has requested during the mission. Hints hold information that is explicitly designed

to help the player but has to be optional for the player. In Lost Earth this could be the mission briefing,

which is optional but provides the player with further instructions and background information. More

traditional, hints are explicitly requested by the player and guide the player to the next reasonable step.

Hints are normally limited in their amount or repeat the same information when requested repeatedly

until the player has overcome the current challenge. Alternatively, any optional game manual can be

understood as a general hint explaining game play functionality. Location changes nloc is the number of

locations the player has visited and/or the number of changes between the locations in the game. For

Lost Earth, this is the number of times the player visits the bridge or the hangar. Of course, instead of one

variable this could be easily extended to a variable for each location, for which it would represent the

frequency of player visits. This variable is applicable to all games and applications that allow the player to

change “locations”, where a location can mean a real in-game location or just a different window in a

window-based application. Finally, dialogues ndia is the number of dialogues that were opened by the

player. Like with location changes this can be more fine-grained and extended to a different variable for

each dialogue in the game, where it would allow to track the players frequency and time resolution for a

specific dialogue. For example this variable would measure how often the player has opened the weather

console because this information is vital in choosing the right deployment delay round for a specific sensor.

Most, if not all, of these variables require additional events to be captured as xAPI statements.

Game measures are the most specific of all observable variable because they only apply to a particular

game and are normally not transferable to other games or applications without a reinterpretation. Because

the focus of this thesis lies on general frameworks and cognitive user models, I have decided not to

use observable variables of this level, but instead base the descriptive models on variables of the more

generally applicable levels. One example of a game measure variable might be detours which captures

the number of detours the player has taken during the mission compared to an ideal solution where the

player knows exactly what the next steps are and where to go. This variable can only be game-dependent

because what counts as a detour has to be defined with respect to the particular game, the available

locations and interaction possibilities of the player and the current type of mission. Another problem of

this variable is how to interpret a detour. Maybe the player knows exactly where to go next, but first

wants to visit side characters to further advance personal stories or wants to check the latest news from

the game universe. In general, the more specific a measure gets, the more careful we have to be with its

interpretation.

I want to state explicitly that the list of presented observable variables is neither exhaustive nor final.

There might be many other variables that are equally or even better suited to capture player interactions

in Lost Earth, or any game. My intention was to present a hierarchy of levels the observable variables can

be assigned to and to derive observable variables useful for the realization of a cognitive user model.

To work with Bayesian models, it is required to define the relevant observable data, the involved

measurement scales of the data and the definition of variables that are to be predicted and variables that

are predictors. This was done in this chapter by defining a set of observable variables along with their

4.2. Interaction Patterns for Lost Earth 79

type and domain. These observational variables will be the target variables in the descriptive models

presented in section 2.1.22.1.2 Hierarchical Bayesian modelingHierarchical Bayesian modeling (page 3131).

4.3 Realizing Cognitive User Models

In this section I present the main concepts that I developed to realize cognitive user models with the

help of either cognitive architectures or hierarchical Bayesian models. Regarding the aim of this thesis to

contribute to applied research and not fundamental research—what are the expectations and requirements

for the use of existing approaches? I considered the following requirements given in alphabetically order

for convenience:

Actively developed The software or library should be actively developed, ideally on a publicly accessible

online repository.

Appropriateness The software or library should support the goal of this thesis to infer the learner’s

current cognitive state. It does not have to support all cognitive variables but must

provide information that can be used by an adaptive system to decide when to

adapt. The selection of an adaptive measure is not part of the cognitive user model.

Availability The software or library should be publicly available and free to use.

Extensibility The software or library should provide support for own modifications or extensions

if necessary.

Extensive support The software or library should provide extensive support in form of (online) manu-

als, demonstrations, tutorials, and a supportive community.

Generality The software or library should allow for general solutions and not only provide

solutions for a very narrow set of problems. It should be game-independent as well

as domain-independent.

Intelligence The software or library should not require that all intelligence be brought in by the

modeler but instead show some kind of intelligent behavior that goes beyond what

was defined in the model.

Interoperability The software or library should operate on xAPI statements and provide output that

can be easily used within the ELAI framework to derive adaptive measures. There

should be no use of proprietary formats for input or output.

Lightweight The software or library should be lightweight to facilitate the use as an external

controller in the ELAI framework that hosts the intelligence.

Low dependencies The software or library should be a stand-alone program and not be dependent on

external requirements.

Proved and tested The software or library should not be experimental but well-proven, ideally with

publicly available research studies.

4.3. Realizing Cognitive User Models 80

Simplicity The software or library should be simple and easy to learn for the modeler.

Both Soar 9 and PyMC3 are software packages or frameworks, respectively, that fulfill many of

these requirements, but have different strengths and weaknesses that I will address in section 7.17.1

Assessment of RequirementsAssessment of Requirements (page 153153) of the final chapter 77 Conclusion and RecommendationsConclusion and Recommendations. The

following two sections provide the details of how to realize cognitive user models with each of the chosen

frameworks.

4.3.1 With cognitive architectures

The latest version of Soar 9, 9.6.0, was used. The architecture itself along with all additional material is

available from the website22. Soar 9.6.0 can be downloaded as a multi-platform version with or without

additional tutorials. Soar runs on different platforms, including Linus, Unix, Mac OS X, and Windows,

both on 32-bit and 64-bit versions. After the download, Soar can be started with a graphical user interface

via the SoarJavaDebugger file or using a command line interface via the Soar_CLI file.

The Soar program can be started with the Soar Debugger script (Figure 4.104.10 on the next page). The

Soar program is used to load and run Soar agents that use if-then rules, called productions, to solve a

given problem. The Soar Debugger is a powerful tool for debugging Soar agents: it allows to run Soar

step-wise and halt the program at any point in the Soar Cycle and inspect its state.

Everything in Soar is accomplished by productions stored in the production memory. Productions

are either read in from a file, that is, entered by a user, or generated by chunking, which is one of Soar’s

learning mechanisms. Each production has three required components: a name, a set of conditions,

also called the left-hand side, and a set of actions, also called the right-hand side. Syntactically, each

production consists of the symbol sp, followed by: an opening curly brace, the production’s name, the

production’s conditions, the symbol -->, the production’s actions and a closing curly brace:

sp {production-name

‘‘Documentation string’’

:type

CONDITIONS

-->

ACTIONS

}

An example production, named blocks-world*propose*move-block is shown in Listing 4.14.1 on the

following page. This production proposes a new operator (+) with the name move-block that takes

<thing1> and puts it to destination <thing2>, whenever the conditions are met, which check whether the

block can be moved safely to the destination. The Soar syntax is fully described in the Soar User’s Manual

by Laird, Congdon, et al. (20172017).

To write Soar programs any text editor can be used, but Soar comes with VisualSoar, an editor with

internal support for Soar programs (Figure 4.114.11 on page 8383).

2 https://soar.eecs.umich.edu/https://soar.eecs.umich.edu/

4.3. Realizing Cognitive User Models 81

https://soar.eecs.umich.edu/

Figure 4.10.: Soar Debugger. Soar with a graphical user interface. The large window on the left is the
interaction window with debugging information and output of print statements. Below the
interaction window is the Command Box for user commands. The windows on the right
display information about the state of the Soar agent and the Soar Cycle widget. In this
example a simple agent for the Water Jug problem was loaded and executed for three runs.

Listing 4.1: An example production from the example blocks-world task.
1 sp {blocks-world*propose*move-block

2 (state <s> ^problem-space blocks

3 ^thing <thing1> {<> <thing1> <thing2>}

4 ^ontop <ontop>)

5 (<thing1> ^type block ^clear yes)

6 (<thing2> ^clear yes)

7 (<ontop> ^top-block <thing1>

8 ^bottom-block <> <thing2>)

9 -->

10 (<s> ^operator <o> +)

11 (<o> ^name move-block

12 ^moving-block <thing1>

13 ^destination <thing2>)}

4.3. Realizing Cognitive User Models 82

Figure 4.11.: The VisualSoar editor fo Soar programs. The example shows the project structure for the
Water Jug problem from the tutorial. The window on the left is the Operator window and
shows the project structure in form of a tree. The Datamap window (middle) describes
the hierarchical working memory structure. VisualSoar can run tests against the Datamap
structure to detect spelling mistakes and other problems with production rules. VisualSoar
opens the files that contain the production rules in separate windows (right).

4.3. Realizing Cognitive User Models 83

Listing 4.2: The initialization application rule for the Water Jug proble. The rule adds the name to the
state and creates two jugs with volumes of 5 and 3 and contents 0.

1 sp {water-jug*apply*initialize-water-jug

2 (state <s> ^operator <o>)

3 (<o> ^name initialize-water-jug)

4 -->

5 (<s> ^name water-jug

6 ^jug <j1>

7 ^jug <j2>)

8 (<j1> ^volume 5

9 ^contents 0)

10 (<j2> ^volume 3

11 ^contents 0)}

For each problem that a Soar agent is going to solve there has to be a state representation in working

memory that tells Soar what attributes can be modified. Besides the definition of the production rules,

this is the main task for the modeler: to come up with a useful and complete state representation. Each

program begins with an initialization in which the initial state and initial WMEs are created. This is done

by one initialization application rule which fires at the begin of a Soar program. For example in the Water

Jug problem, there are two jugs and each jug has a volume that can be filled and the amount of water it

currently holds. The initialization production rule for this problem is given in Listing 4.24.2.

To understand how to work with Soar, how to write Soar programs and how to use Soar for the

purposes of this thesis, I have worked through the first three out of eight tutorials provided by Soar, which

alone were 150 pages in total. At this point I had to decide whether Soar was the right approach for

realizing CogIUMs. I came to the conclusion, that it is not.

From what I have presented so far about the working mechanisms of Soar it should be clear that

working with Soar 9 means to define the initial state the agent starts in and possible WMEs it can

manipulate along with a set of production rules that elaborate states, propose operators or define the

application of operators. To realize a CogIUM with Soar 9 would have meant for me to model the game

with this methods. A Soar program would create an agent that starts in a given initial state that represents

a state from Lost Earth. Then, the agent would explore the problem space to find a path from the initial

state to the defined goal state, which would be the successful deployment of a sensor and platform.

Because ViLand is an external application and not part of the game Lost Earth, I would not write a Soar

program for the imagery interpretation part but only for the interactions that took place directly in Lost

Earth. Because I worked with an early prototype of Lost Earth, the set of possible interactions was still

limited and it would have been possible to write a Soar program for this part of the game, as was shown in

the activity diagram (Figure 4.94.9 on page 7777). I would have to write a production rule for each interaction

in Lost Earth and define how this action changes the state. For example opening the weather console

would create new semantic knowledge about the weather forecast, which could be stored in the semantic

long-term memory of the agent via the ^store command. Or, when the player selects the number of

deployment delay rounds this would change an attribute like ^delay-rounds of the current state to reflect

the player’s choice.

4.3. Realizing Cognitive User Models 84

Although this was a possible way to go, it would have taken a great amount of time to model

all necessary operators and production rules in Soar. There are tools to help with this, like the Game

Description Language33, which describes the state of a game as a series of facts, and the game mechanics

as logical rules, but resources were outdated and the tool was not available44. However, there was a more

serious problem.

The main problem with Soar 9 as the tool for a CogIUM is how to come from the generated output

to the learner’s cognitive state. Soar 9 has no internal variables that represent the cognitive state of

the Soar 9 agent. Soar is called a cognitive architecture because it has built-in assumptions about how

human cognition works but it delivers no output that allows a direct inference about the agent’s cognitive

state. Soar 9 supports four learning mechanisms, chunking, semantic learning, episodic learning and

reinforcement learning, all of which could have been used for this thesis. But again, the question remains

how to use these mechanisms to learn something about the internal cognitive state of the agent. I have

summarized my considerations regarding Soar 9 as a CogIUM and have given exemplary outputs that I

think are possible with Soar 9 (Figure 4.14.1 on page 7171). Each interaction of the user will be provided to

the Soar program as input by xAPI statements. Soar uses this input to create the agent and the initial

state S0. Then the Soar agent runs the Soar program and explores the problem space until it finds the

goal state. The output of Soar will be the explored problem space and the found path from the initial

state to the goal state along with everything the agent has learned during the process. The output can be

used in several ways:

• Soar can provide an overview of all valid next actions along with an evaluation of each action’s

effect towards reaching the goal state. The player can be informed about possible next actions or

just the best next action given their current position in the game.

• Soar can detect dead ends or harmful states. The player can be warned about actions that might

lead to dead ends or, in hindsight, can be informed about alternative actions that would have led to

the goal state.

• Soar can provide a path from the initial state to the goal state and compute the distance to the goal

state. If repeated runs of Soar compute the same distance, this would indicate that the player does

not get closer to the goal state, or even increases their distance. The player could be informed about

this observation and be asked if they like assistance to progress.

• Soar can provide alternative paths to the goal state, if they exist. The player can be informed about

these alternative paths to further strengthen their mastery of the domain or to show alternative

solutions to foster problem understanding and solution.

• Soar can provide a history of previous states via episodic memory, which represents an agent’s

stream of experience. Soar can detect if the agent was in the same state before or has executed an

operator under the same conditions. The player can be informed about going in circles or about

what they have done the last time in a similar situation.

To sum up, there are ways to use Soar 9 for an adaptive system to decide when to adapt and influence the

user in choosing their next action, but there is no direct way to asses the user’s current cognitive state.

That is not what Soar is intended to do. To infer the user’s cognitive state one has to use proxy data like

3 http://games.stanford.edu/games/gdl.htmlhttp://games.stanford.edu/games/gdl.html
4 https://soar.eecs.umich.edu/articles/downloads/domains/180-general-game-player-translatorhttps://soar.eecs.umich.edu/articles/downloads/domains/180-general-game-player-translator

4.3. Realizing Cognitive User Models 85

http://games.stanford.edu/games/gdl.html
https://soar.eecs.umich.edu/articles/downloads/domains/180-general-game-player-translator

the number of decisions and impasses required to come to a solution. Sweller (19881988, p. 265) already

mentioned that “a production system is not specifically designed to measure cognitive load, [but] there

are several aspects of production systems which could provide suitable measures.” He lists the number of

statements in working memory, the number of productions and the number of conditions that need to

match statements in working memory as possible correlates. I corresponded with John Laird, one of the

inventors of Soar, and he confirmed that, at the moment, Soar does not provide such information as there

a no background calculations of cognitive load, or attention monitoring. He pointed at work done by Soar

Tech where ITS were built that monitor people doing tasks, but I did not pursue this direction further.

4.3. Realizing Cognitive User Models 86

xAPI statements

output can influence

output can influence

User

next user action

st

next user action

st+1

future states

operator

S0

S3

S2

S1

S42

Goal
state

CogIUM

operator

S0

S2

S1

S42

Goal
state

problem
space

problem
space

xAPI statements

Possible and helpful
next actions

Detection of
dead ends and
harmful states

Distance and
direction to
goal state

History of
previous states

Alternative paths
to goal state

Figure 4.12.: Realizing cognitive user models with Soar 9. Each action of the user is captured by xAPI
statements and provided to Soar 9 as input. Soar 9 has an internal model of the game and
conducts a search through the problem space to find a path from the user’s current position
(initial state S0) to the goal state (shaded rectangle). The problem space changes as the user
moves on in the game. The information produced by Soar 9 as output can be used as input
for an adaptive system.

4.3. Realizing Cognitive User Models 87

4.3.2 With (hierarchical) Bayesian models – second and third step of Bayesian data analysis

After the insight that Soar 9 is not suited to meet the research goals of this thesis, and the decision to not

longer follow this approach, another approach had to be found. Instead of a very powerful framework like

Soar 9, which demands a lot of domain and task modeling effort but cannot directly offer inferences about

the cognitive state of the learner, I decided to choose a different approach that is like the direct opposite

of the first: to build a probabilistic statistical model of the data that only specifies what is really needed

for the task of this thesis. The Bayesian modeling approach allows for maximal control and flexibility as

the model can be as general or as complex as needed. Bayesian models are directly built in a way to infer

the state of latent, non-observable variables from observable variables.

Because I ended the last section with an overview about how Soar 9 can be used to realize CogIUMs,

I want to give the same line of reasoning for HBMs (Figure 4.134.13 on the next page). In comparison to

the procedure that I have presented for Soar 9, HBMs will have to work with the collected data at the

end of a mission, because all observations the model is going to explain have to be first collected by the

game, which happens only at the end of a mission for variables like the mission time. After the player

has finished a mission, either successful or with failure, the collected data is send to the CogIUM in form

of xAPI statements. The intelligence of the CogIUM is realized by a HBM which takes predefined prior

distributions for each model parameter as well as the observable data as input and calculates via Bayesian

inference the posterior distributions for all model parameter. The model parameters are variables that

can be directly interpreted as cognitive variables like motivation or the experienced difficulty. Because

the model produces posterior distributions, which are probability densities, the model gives directly

interpretable probabilities as output. It is straight forward to derive point estimates like mean and mode

values as well as HDIs from the posterior distributions. Therefore, at the end of each mission, the model

can infer the learner’s current cognitive state and make statements about their current value with an

estimate of uncertainty. Because the posterior is a probability density, it can be reused in another run of

Bayesian inference as the prior, replacing the old, non-informative prior with the latest belief according to

the data.

According to the five steps of Bayesian data analysis that were presented in section 2.1.22.1.2

Bayesian data analysisBayesian data analysis (page 3434), to realize a CogIUM with HBMs I needed to define a descriptive model

for the relevant data, as defined in the section 4.2.14.2.1 Identify the dataIdentify the data (page 7878), with meaningful parame-

ters, and to specify the prior distributions of the parameters. By choosing the Cognitive Load Theory (CLT)

as a central aspect of the cognitive state of the learner, the components of this theory had to play a key role

in the descriptive model as latent variables. As was mentioned in section 2.3.12.3.1 Cognitive Load TheoryCognitive Load Theory

(page 4848), cognitive load consists of three main components: intrinsic cognitive load (ICL), extraneous

cognitive load (ECL) and germane cognitive load (GCL) (Figure 2.152.15 on page 5151). ECL is the only variable

that is truly independent of the learner and only depends on the instructional design of the material.

ICL is independent of the learner, if the level of prior knowledge is constant. Otherwise, ICL changes

with the level of prior knowledge. GCL, on the other side, is independent of the learning material and

only dependent on the learner’s characteristics. The motivation of the learner further complicates the

relationship, because motivation has an influence of the amount of resources allocated in working memory

to deal with the ICL that was imposed by the task. As stated by the CLT, a learner’s performance will

4.3. Realizing Cognitive User Models 88

Mission 1

Parameter
Motivation

Difficulty

Workload

Emotion

PE PosteriorHDI

Mission 2

Parameter
Motivation

Difficulty

Workload

Emotion

PE PosteriorHDI

Mission
successful?

repeat

t1,1

steps/dialogues/decisions

t1,2 steps/dialogues/decisions

CogIUM

20 %

80 %

75 %

42 %

Output
[.15, .25]

[.78, .85]

[.60, .89]

[.37, .52]

xAPI statements

next

next

Mission
successful?

repeat

t2,1

steps/dialogues/decisions

t2,2 steps/dialogues/decisions

CogIUM

58 %

42 %

23 %

78 %

Output
[.48, .62]

[.40, .45]

[.20, .30]

[.66, .85]

xAPI statements

possible transfer of
posterior as

next prior

Figure 4.13.: Realizing cognitive user models with hierarchical Bayesian models. During each mission
the player executes a series of actions, which takes time t. At the end of each mission all
user interactions are send to the CogIUM in form of xAPI statements. The CogIUM is given
prior distributions for each model parameter and observable data as input and produces
via Bayesian inference posterior distributions for each model parameter. This posterior
distribution is the base for the computation of point estimates (PE) like mean or mode values
and highest density intervals (HDI). The posterior of one mission can also serve as the prior
for another mission.

4.3. Realizing Cognitive User Models 89

decrease when either ICL, ECL or the combination of both exceeds the working memory capacity of the

learner (Figure 2.162.16 on page 5252). All things considered, I had enough information to specify a first draft

of the CogIUM.

First draft and core design

The first draft of a descriptive model based on the CLT and the described observable variables is very

close to the model of CLT (Figure 4.144.14 on the following page). It is not a fully descriptive model, because

the probability distributions for the variables are yet to be defined. But it already specifies the equations

to compute the deterministic variables. The model defines variables for two different groups: personal

variables that differ between subjects and are indexed with a p and conceptual variables that differ

between concepts and are indexed with a c. ‘Concept’ in this context means a learning concept that the

learner should acquire. In the context of a digital educational game this can be any concept implemented

in the game. For this thesis, I have assumed that each mission of the serious game Lost Earth 2307 can be

seen as one such concept. Thus, for the context of this analysis, the term concept is identical with mission,

but it has not to be. The model is flexible enough to handle as much fine-grained concepts as necessary as

long as the observable data fits to the model. For Lost Earth 2307, observable data is gathered at the end

of a mission and therefore a concept is identical to a mission. In addition to the group variables, there are

also variables that differ between subjects as well as between concepts and are indexed by both pc. All

three deterministic variables belong to this category. Table 4.24.2 gives a detailed overview of all variables in

the basic model along with their attributes and domains.

Table 4.2.: Main variables of CogIUM and their domains.

Variable Name Group Index Matrix Dimension Domain

ecl ECL Concept c c × 1 R≥0

icl ICL Concept c c × 1 R≥1

m Motivation Person p p× 1 [0,1]
wm Working Memory Capacity Person p p× 1 7± 2

ψ Prior Knowledge Person p p× 1 [0,1]

gcl GCL Concept & Person pc p× c [0,1]
cl Total Cognitive Load Concept & Person pc p× c R≥0

δ Free Working Memory Capacity Concept & Person pc p× c R≤1

ECL eclc and ICL iclc are the two conceptual variables that differ between concepts. Because these

components of the CLT are determined by the number of interactive elements of the learning material,

they are best represented by integer values. As there cannot exist a negative number of interactive

elements, both variables are positive. eclc is assumed to have the possibility to be 0, that is, ECL can be

entirely eliminated, when the instructional material imposes no additional load. iclc, however, has to be

greater or equal 1, because there has to be at least one interactive element so that there is something

4.3. Realizing Cognitive User Models 90

clpc

δpc

iclceclc

gclpcmp

ψpwmp

qpc

tpc

spc

kpc

nrnd,pc

ndia,pc

nloc,pc

nhnt,pc

Concept 1, . . . , c

Person 1, . . . , p

Deterministic variables

clpc ← (1−ψp) · iclc + eclc

gclpc ←







0 if mp ·wmp − eclc < 0
mp ·wmp − eclc

wmp
else

δpc ←
wmp − clpc

wmp

Figure 4.14.: First draft of the CogIUM. Plates indicate variables that belong to a group. Personal variables
with index p are variables that differ between subjects but not concepts. Conceptual variables
with index c, on the other side, differ between concepts but not subjects. In the intersection
of both plates are variables with an index pc that are both personal and conceptual and thus
differ between subjects as well as between concepts. The notation for HBMs was introduced
in Table 2.22.2 on page 3232.

4.3. Realizing Cognitive User Models 91

for the learner to learn. The greater the value for either iclc or eclc the higher the number of interactive

elements in the learning material or the instructional design.

Motivation mp, working memory capacity wmp, and prior knowledge ψp are the personal variables

that differ between subjects. Motivation influences the amount of working memory dedicated to deal with

the intrinsic cognitive load, so motivation will determine gclpc. As the role of motivation is to determine

the amount of free working memory capacity, I decided to model motivation as a multiplicative factor

between 0 and 1. Thus, a motivational value of mp = 0 means that there is no working memory capacity

used at all for learning. If, on the other side, the motivational value is mp = 1, then all working memory

capacity is used for learning. The working memory capacity wmp is the same kind of variable as eclc and

iclc, which means that it is modeled as a discrete number of elements the learner can hold simultaneously

in their working memory. This is because both types of cognitive load impose a cognitive load to the

working memory. For example if eclc and iclc both are half the number of the working memory capacity,

then their sum is equal to the whole working memory capacity and the working memory is charged to

capacity. The role of prior knowledge ψp is quite similar to the role of motivation, as it determines the

influence of iclc. If a person has a lot of prior knowledge about a concept or task, then the ICL that

is imposed by the learning material should be much smaller for this particular person because a lot of

concepts are already known, familiar and organized into more effective chunks or schemata. When, on

the other side, a person has no prior knowledge at all about a concept or task, then any information is

new and everything has to be learned from scratch, there are no familiar concepts and no connections to

related concepts. Therefore, I chose to model prior knowledge in the same way as motivation, that is, as a

multiplicative factor between 0 and 1. If the value of prior knowledge is ψp = 1, then everything about

the concept is already known and iclc will have no contribution to the total cognitive load clpc. If, on the

other side, the value of prior knowledge is ψp = 0, then nothing is known about the concept and the iclc
value will fully contribute to the total cognitive load clpc.

GCL gclpc, total cognitive load clpc, and free working memory capacity δpc are the variables that

differ both between subjects and concepts. This is because they are determined by both personal and

conceptual variables. gclpc is modeled according to the CLT as the amount of working memory that is

dedicated to handle the ICL. The total amount of working memory capacity, that is available, is given

by multiplying the motivational factor with the working memory capacity, mp ·wmp. From this initial

capacity, the value for eclc is subtracted because the learner has to deal with ECL to understand what

the instructions are about, so gclpc is computed by mp ·wmp − eclc. gclpc is limited to positive values

because negative values are neither plausible nor interpretable. To allow a comparison between different

applications, gclpc is normalized by the working memory capacity wmp, because this variable can differ

between subjects. Thus, the final equation for gclpc is

gclpc =











0 if mp ·wmp − eclc < 0

mp ·wmp − eclc
wmp

else
. (4.1)

Due to the normalization, gclpc is always between 0 and 1. A value for gclpc of 1 means that there is no

eclc and all working memory capacity is dedicated to learning. A value for gclpc of 0 can mean one of two

4.3. Realizing Cognitive User Models 92

things, or a combination: either the motivation is so small, that there was not enough initial working

memory capacity, or the value for ECL is higher than the working memory capacity available to deal with

ICL. The total cognitive load clpc is the sum of iclc and eclc. However, as we have said and as is indicated

by the index pc, clpc is not only a conceptual variable but also a personal variable, because the cognitive

load imposed by ICL is reduced by the prior knowledge of the subject. Thus, clpc is computed as

clpc = (1−ψp) · iclc + eclc. (4.2)

The range of the values for clpc has a lower limit of 0 and no strict upper limit. The free working memory

capacity δpc is the working memory capacity left after subtracting the total cognitive load clpc from the

initial working memory capacity. Again, to obtain comparable results across different applications, δpc is

normalized by the working memory wmp,

δpc =
wmp − clpc

wmp
. (4.3)

The range of values for δpc has an upper limit of 1 and no strict lower limit. δpc is the only deterministic

variable which can be both positive and negative and where the sign has an actual meaning:

δp > 0 When δpc is positive, this means that there are more working memory capacities available than

the learning task requires. This can be the case if the total cognitive load clpc is rather small

or if a high ICL is reduced by a lot of prior knowledge or if the working memory capacities

wmp for this person are especially high. A positive value for δpc is favorable. However, if the

value for δpc is near 1, this might indicate a boring task as there are no real demands imposed

upon the learner by the task.

δp = 0 Whenever the working memory capacity wmp equals the total cognitive load clpc imposed by

the task, the free working memory capacity equals 0. On one side, this means that the learner

is operating at their limit. On the other side, this might be the right condition for the learner

to experience a state of flow or to enter the ZPD.

δp < 0 When δpc is negative, the total cognitive load clpc imposed by the task exceeds the learner’s

available working memory resources wmp. Is this the case then the task consists of too many

interactive elements that need to be considered at the same time, or the instructional design

imposes a too high ECL.

The presented design is shared among all models. It is based on theoretical findings and experimental

evidence from research on CLT. Different models differ only in the way they use the deterministic

variables as the cause for the observations and in the number of layers used to model the relationship

between variables. All observations also share the indices pc because, in the model, they are caused by

the deterministic variables. So for each subject and each concept there exists a value for each of the

observable variables. The different models analyzed in this thesis differ mainly in the way how they model

the relationship between the observations and the latent variables.

4.3. Realizing Cognitive User Models 93

Due to time limitations it was not possible to find build and train a model that describes all observable

variables. With the first three models that I am going to present in the next couple of paragraphs I focused

on modeling the cause for the two observable parameters task success kpc and mission score spc. After

having succeeded in finding an appropriate model, I went on to model a third observable variable mission

time tpc. With the fourth model being able to successfully model three observable variables I validated

the model on a wide range of observable data sets to assess the model’s performance. I will discuss

possible model extensions in section 5.45.4 How to Extend the Model FurtherHow to Extend the Model Further (page 144144) and in section 7.27.2

Open Questions and Future WorkOpen Questions and Future Work (page 156156).

There is an important exception for all models regarding the latent variable for working memory

capacity wmp. This variable was originally thought to be latent and the model should have had the

possibility to find an appropriate value for this variable for each subject and model individual differences

regarding the performance of the working memory. Originally, the variable wmp was modeled as

normally distributed around a mean value of 7 with a standard deviation of 1 to reflect the knowledge

about the general limitations of the working memory (Miller, 19561956; Toh, 20052005). However, during the

implementation I realized the model used this variable to explain individual differences by setting wmp to

values near zero or far above 7. Besides the initial prior probability distribution centered around 7, the

model was not constraint in the choice of wmp values. So I decided to set this variable in all models to a

value of 7 and treat it like a kind-of-observed variable. Of course, it is possible to turn the variable again

into a latent variable and, For example use a more restricted range of allowed values. That is the reason

for the node wmp to be shaded in the following graphical models.

ModelM1 – original CogIUM for two observations

The first fully specified descriptive model is called CogiumOrig2Obs, orM1 for shorter reference in this

thesis, and is implemented in the class with the same name in the CogIUM package (Figure 4.154.15 on the

following page). M1 models the two observable variables task success kpc and mission score spc—hence

the last part of the name: “2Obs”.

The mission score spc is modeled as a beta distribution that is governed by the two parameters a

and b. The beta distribution is a natural choice for a variable that should be interpreted as a success

probability and is limited between 0 and 1. The reason for choosing a = 0.5+ gclpc and b = 1−δ− pc

is to reflect a credible behavior for values of either gclpc or δpc near 1 or 0 (Figure 4.164.16 on page 9696).

When gclpc is near zero, in most cases the probability for a low mission score spc is higher than for a high

mission score. However, this has not to be the case for the combination of a low gclpc value and a high

δpc value. The logic behind this is that when δpc is near 1, the learning task imposes so little cognitive

load that not much gclpc is needed to deal with it. On the other side, if gclpc is high, the probability of a

high mission score is in most cases higher than for a low mission score. Again, the only exception from

this behavior is when δpc is near −1, because this indicates a cognitive load imposed by the learning task

that is much higher than the available working memory resources. In this case, even a very high gclpc is

not enough for successful learning because the learning material is to complex and consists of too many

interactive elements or the instructional design is too bad.

4.3. Realizing Cognitive User Models 94

clpc

δpc

iclc

µicl σicl

eclc

µecl σecl

gclpcmp ψp

wmp

spc

pobs

kpc

Concept 1, . . . , c

Person 1, . . . , p

Priors

mp ∼ Beta(3,1)

ψp ∼ Beta(2,2)

µicl ∼ Gamma (2, 0.5)

µecl ∼ Gamma (2, 0.5)

σicl ∼ HalfCauchy (3)

σecl ∼ HalfCauchy (3)

Intermediate variables

iclc ∼ Normal (µicl,σicl)I(1,∞)

eclc ∼ Normal (µecl,σecl)I(0,∞)

pobs ∼ Beta
�

1+ gclpc , 1−δpc

�

Deterministic variables

wmp = 7

clpc ← (1−ψp) · iclc + eclc

gclpc ←







0, if mp ·wmp − eclc < 0
mp ·wmp − eclc

wmp
, else

δpc ←
wmp − clpc

wmp

Observable variables

spc ∼ Beta
�

0.5+ gclpc , 1−δpc

�

kpc ∼ Bern (pobs)

Figure 4.15.: Graphical model ofM1, as implemented in the CogIUM package.M1 models the cause for
two observable variables: task success kpc and mission score spc. spc is modeled as normally
distributed and depends on both gclpc and δpc . kpc is modeled with a Bernoulli distribution
with success probability pobs. The notation for (hierarchical) Bayesian models was introduced
in Table 2.22.2 on page 3232.

4.3. Realizing Cognitive User Models 95

0.0 0.2 0.4 0.6 0.8 1.0
Observable variable like spc

10 3

10 2

10 1

100

101

Pr
ob

ab
ilit

y
De

ns
ity

 --
 L

og
 S

ca
le

Beta Distribution

gcl = 0, = -0.99
gcl = 0, = 0
gcl = 0, = 0.99

gcl = 0.5, = -0.99
gcl = 0.5, = 0
gcl = 0.5, = 0.99

gcl = 1, = -0.99
gcl = 1, = 0
gcl = 1, = 0.99

Figure 4.16.: Beta distribution for different values of gclpc and δpc. Line style is the same for curves with
the same gclpc value. y-axis has logarithmic scale.

The task success kpc is modeled as a Bernoulli distribution with success probability pobs. The main

advantage of the Bernoulli distribution is that it produces only binary outcomes, either success or failure,

or 1 and 0, which is exactly the domain of the variable task success. The success probability pobs is again

modeled as a beta distribution. Very similar to the mission score spc, gclpc influences the a parameter

and δpc influences the b parameter of the beta distribution. Here I chose the equations a = 1+ gclpc and

b = 1−δpc because I wanted kpc to have a chance of 50 % to be either 1 or 0 when gclpc = 0 and δpc = 0,

that is, when the learner dedicates no resources to the task and the learning task demands all available

resources. A positive gclpc increases the success probability as well as a positive δpc. A negative gclpc

decreases the success probability as well as a negative δpc.

The conceptual variables ICL iclc and ECL eclc are modeled as normally distributed with a mean value

µicl and a standard deviation σicl . Originally, both were intended to be modeled as discrete variables,

but Bayesian inference for discrete variables is not as robust as with continuous variables and during

the inference PyMC3 would have to use different MCMC samplers. This is due to the fact that key

assumptions of MCMC convergence diagnostics are violated for discrete variables, or require a larger

sample size (Deonovic and Smith, 20172017). for Therefore, I decided to only use continuous distributions for

latent variables. For interpretation, one can always treat a continuous variable like a discrete variable by

discretization. Because iclc and eclc both represent the interactive elements of the learning material, one

discretization would be to round to the nearest integer value. Because a normal distribution is not limited

in its codomain, the subscripts I[1,∞] and I[0,∞] mean that the values of the normal distribution

are limited to the given range. The priors for µicl and µecl should be positive and non-informative, so a

gamma distribution with parameters 2 and 0.5 was chosen55. This choice slightly favors smaller values

over higher values but does not rule out higher values. Likewise, the associated standard deviations σicl

and σecl should be positive and non-informative, so a half-Cauchy distribution with parameter 3 was

5 See https://docs.pymc.io/api/distributions/continuous.htmlhttps://docs.pymc.io/api/distributions/continuous.html for a definition of probability distributions along with
examples for different parameter values for all distributions used in the Bayesian models.

4.3. Realizing Cognitive User Models 96

https://docs.pymc.io/api/distributions/continuous.html

0.0 0.2 0.4 0.6 0.8 1.0
Motivation mp

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

Prior Distribution
a = 3, b = 1

0.0 0.2 0.4 0.6 0.8 1.0
Prior knowledge p

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
ob

ab
ilit

y
De

ns
ity

Prior Distribution
a = 2, b = 2

Figure 4.17.: Shape of beta distribution for (left) motivation mp and (right) prior knowledgeψp.

chosen. Again, this slightly favors smaller values over higher values, but the higher the β parameter

of the half-Cauchy distribution, the more the distribution resembles a uniform distribution. The choice

of priors follows in general the recommendations of Gelman (20062006) for priors in hierarchical models.

It is important to understand that both mean and standard deviation are group variables and that is

the reason why they are placed within the concept plate in the graphical model. This means that each

concept c has its own values for µicl ,µecl and σicl ,σecl , which are then used to draw values for iclc and

eclc. There are no global variables for the conceptual variables so each concept is completely independent

of other concepts in the model. To change this, one could introduce global hyper-parameters for the group

variables µ and σ.

The last variables that require an explanation are the personal variables for motivation mp and for

prior knowledge ψp. Both are modeled as group variables and drawn from a beta distribution with

parameters a = 3 and b = 1 for motivation and with a = b = 2 for prior knowledge (Figure 4.174.17). The

choice of any prior distribution is a commitment to certain assumptions and should be accepted by a

skeptical scientific audience. For motivation I made the assumption that it is more likely for a person to

be a priori highly motivated than to be less motivated. This reflects the findings from research about

motivation in players of digital educational games. For prior knowledge I made the assumption that its

value is a priori centered around the value 0.5 and that it is more and more unlikely that a person knows

anything (ψp = 1), or nothing (ψp = 0) about a concept. Because they are group variables of the person,

they are placed within the person plate in the graphical model. They differ between subjects but not

between concepts. However, because there are no global variables, mp and ψp are independent between

subjects.

ModelM2 – improved CogIUM for two observations

The second fully specified descriptive model is called CogiumImproved2Obs, orM2 for shorter reference

in this thesis, and is implemented in the class with the same name in the CogIUM package (Figure 4.184.18

on the next page). M2 models the two observable variables task success kpc and mission score spc—hence

the last part of the name: “2Obs”.

ModelM2 differs fromM1 only in the way how the mission score spc is modeled. Instead of a beta

distribution, spc is now modeled as normally distributed, with a mean value determined by gclpc and a

global standard deviation σs. In this model, δpc has no influence on the value of spc. Instead, spc is much

4.3. Realizing Cognitive User Models 97

more dependent from gclpc and is centered around its value, which can be interpreted as that the value of

gclpc is a direct forecast for the value of spc. A global standard deviation σs means that all subjects share

this standard deviation over all concepts, so spc deviates from its center value gclpc always about the same

value σs.

clpc

δpc

iclc

µicl σicl

eclc

µecl σecl

gclpcmp ψp

wmp

spc

pobs

kpc

σs

Concept 1, . . . , c

Person 1, . . . , p

Priors

mp ∼ Beta(3,1)

ψp ∼ Beta(2,2)

µicl ∼ Gamma (2, 0.5)

µecl ∼ Gamma (2, 0.5)

σicl ∼ HalfCauchy (3)

σecl ∼ HalfCauchy (3)

σs ∼ HalfCauchy (1)

Intermediate variables

iclc ∼ Normal (µicl,σicl)I(1,∞)

eclc ∼ Normal (µecl,σecl)I(0,∞)

pobs ∼ Beta
�

1+ gclpc , 1−δpc

�

Deterministic variables

wmp = 7

clpc ← (1−ψp) · iclc + eclc

gclpc ←











0, if mp ·wmp − eclc < 0

mp ·wmp − eclc
wmp

, else

δpc ←
wmp − clpc

wmp

Observable variables

spc ∼ Normal
�

gclpc ,σs

�

kpc ∼ Bern (pobs)

Figure 4.18.: Graphical model ofM2, as implemented in the CogIUM package.M2 models the cause for
two observable variables: task success kpc and mission score spc. In comparison toM1,M2
models spc with a normal distribution that is only determined by gclpc and no longer by δpc .
The notation for HBMs was introduced in Table 2.22.2 on page 3232.

4.3. Realizing Cognitive User Models 98

ModelM3 – hierarchical CogIUM for two observations

The third fully specified descriptive model is called CogiumImprovedHierarchical2Obs, orM3 for shorter

reference in this thesis, and is implemented in the class with the same name in the CogIUM package

(Figure 4.194.19 on page 101101). M3 models the two observable variables task success kpc and mission score

spc—hence the last part of the name: “2Obs”.

ModelM3 differs fromM2 andM1 only in the way how the mission score spc is modeled. Instead

of a beta distribution, spc is now modeled as normally distributed, like inM2, but with a mean value

determined by both gclpc and δpc and a global standard deviation σs. In this model, δpc has again an

influence on the value of spc. The mean value of the normal distribution is computed as a sum of gclpc

and δpc. δpc is mitigated by a multiplicative factor νs, which governs the percentage of how much δpc

is added to gclpc. νs is a personal group variable, meaning that each subject has their own value for νs.

However, νs is also hierarchically modeled, because all νs are dependent on the global distributions for

µν and σν. This introduces shrinkage between the individual values for νs because different νs variables

are linked together by the global variables. A global standard deviation σs means that all subjects share

this standard deviation over all concepts, so spc deviates from its center value gclpc +νs ·δpc always about

the same value σs.

ModelM4 – hierarchical CogIUM for three observations

The fourth fully specified descriptive model is called CogiumImprovedHierarchical3Obs, orM4 for shorter

reference in this thesis, and is implemented in the class with the same name in the CogIUM package

(Figure 4.204.20 on page 102102). M4 models the three observable variables task success kpc, mission score spc,

and mission time tpc—hence the last part of the name: “3Obs”.

ModelM4 extendsM3 by modeling the cause of the mission time tpc. The mission time is modeled

as a linear combination of three distinct parts: a minimal time tmin, a contribution from gclpc, and a

contribution from δpc. The minimal time is modeled as a concept group variable because I assumed each

concept to have a minimal time that is required to complete or learn the concept independent of the

learner’s effort. For the game Lost Earth 2307, For example this is the case because each mission requires

a minimal number of steps to successfully complete the mission like accepting the mission, deploying an

appropriate sensor in the hangar, and processing the raw image back on the bridge. The time required for

these actions cannot be decreased further. Thus, every concept has a minimal time required to complete

this concept.

This minimal time can be increased further either by gclpc or δpc. I assumed no increase in mission

time when the learner invests all resources in learning, that is when gclpc is 1. The less resources are

invested in learning, the more the time required to finish the concept should increase. As gclpc is limited to

the range of [0,1], a multiplicative factor αt is needed to obtain values that are valid for the mission time,

which is measured in minutes. αt is limited to positive values so that the logic of the influence of gclpc

is not turned around should αt become negative. The minimal mission time is also not increased when

δpc is zero. If δpc is positive, that is, there are free working memory resources, then the time actually

decreases. This contradicts the assumption that the minimal mission time cannot be decreased, but as δpc

4.3. Realizing Cognitive User Models 99

is allowed to have positive and negative values, it is hard to find a good parametrization that can deal

with both positive and negative values and still be interpretable. I decided to implement the model in this

way to have a valid interpretation of the core conceptual variables gclpc and δpc. If δpc becomes negative,

that is, there are no free working memory resource, the minimal time increased, as the learner has to deal

with a higher task demand than they can cope with. Again, βt is limited to positive values so that the logic

of the influence of δpc is not turned around. αt and βt are personal group variables, which means that

each subject has their own values for these variables. Like νs before, αt and βt are modeled hierarchically

and are dependent on global parameters σα and σβ . All subjects share these global variables, but draw

their own values from the global distributions so that each subject can have their own αt and βt values.

When compared with spc and kpc, tpc is the variable with the most complex model. kpc only depends

on the deterministic variables gclpc and δpc and not on any other variable. spc also depends on the

deterministic variables, and, in addition, on global and personal group variables. Finally, tpc depends

on deterministic variables, on both personal and conceptual group variables, and on global variables.

Table A.1A.1 on page 168168 gives a detailed overview about all models, the total number of model parameters

and all model variables according to their hierarchical level.

4.3. Realizing Cognitive User Models 100

clpc

δpc

iclc

µicl σicl

eclc

µecl σecl

gclpcmp ψp

νs

wmp

µν

σν

spc

pobs

kpc

σs

Concept 1, . . . , c

Person 1, . . . , p

Priors

mp ∼ Beta(3,1)

ψp ∼ Beta(2,2)

µicl ∼ Gamma (2, 0.5)

µecl ∼ Gamma (2, 0.5)

µν ∼ Normal (0.5, 0.01)

σicl ∼ HalfCauchy (3)

σecl ∼ HalfCauchy (3)

σs ∼ HalfCauchy (1)

σν ∼ HalfCauchy (1)

Intermediate variables

iclc ∼ Normal (µicl,σicl)I(1,∞)

eclc ∼ Normal (µecl,σecl)I(0,∞)

pobs ∼ Beta
�

1+ gclpc , 1−δpc

�

νs ∼ Normal (µν,σν)I(0,1)

Deterministic variables

wmp = 7

clpc ← (1−ψp) · iclc + eclc

gclpc ←







0, if mp ·wmp − eclc < 0
mp ·wmp − eclc

wmp
, else

δpc ←
wmp − clpc

wmp

Observable variables

spc ∼ Normal
�

gclpc + νs ·δpc ,σs

�

kpc ∼ Bern (pobs)

Figure 4.19.: Graphical model ofM3, as implemented in the CogIUM package.M3 models the cause for
two observable variables: task success kpc and mission score spc. M3 is based onM2, but
extends the normal distribution for spc to be also dependent on δpc with a multiplicative
factor νs, which is hierarchically modeled. The notation for HBMs was introduced in Table 2.22.2
on page 3232.

4.3. Realizing Cognitive User Models 101

clpc

δpc

iclc

µicl σicl

eclc

µecl σecl

gclpcmp ψp

νs

wmp

αt

βt

σα

σβ

µν

σν

spc

pobs

kpc

tpc

σs σt

tmin

Concept 1, . . . , c

Person 1, . . . , p

Priors

mp ∼ Beta(3, 1)

ψp ∼ Beta(2, 2)

tmin ∼ Gamma (2,0.5)

µicl ∼ Gamma (2,0.5)

µecl ∼ Gamma (2,0.5)

µν ∼ Normal (0.5, 0.01)

σicl ∼ HalfCauchy (3)

σecl ∼ HalfCauchy (3)

σs ∼ HalfCauchy (1)

σt ∼ HalfCauchy (1)

σν ∼ HalfCauchy (1)

σα ∼ HalfCauchy (1)

σβ ∼ HalfCauchy (1)

Intermediate variables

iclc ∼ Normal (µicl,σicl)I(1,∞)

eclc ∼ Normal (µecl,σecl)I(0,∞)

pobs ∼ Beta
�

1+ gclpc , 1−δpc

�

νs ∼ Normal (µν,σν)I(0,1)

αt ∼ HalfNormal (σα)

βt ∼ HalfNormal
�

σβ
�

Deterministic variables

wmp = 7

clpc ← (1−ψp) · iclc + eclc

gclpc ←







0, if mp ·wmp − eclc < 0
mp ·wmp − eclc

wmp
, else

δpc ←
wmp − clpc

wmp

Observable variables

spc ∼ Normal
�

gclpc + νs ·δpc , σs

�

kpc ∼ Bern (pobs)

tpc ∼ Normal(tmin +αt · (1− gclpc) −

βt ·δpc , σt)

Figure 4.20.: Graphical model ofM4, as implemented in the CogIUM package.M4 models the cause for
three observable variables: task success kpc, mission score spc, and mission time tpc. M4 is
based onM3, but extends the model by incorporating tpc as additional observable variable,
modeled as normally distributed with hierarchically modeled parameters. The notation for
HBMs was introduced in Table 2.22.2 on page 3232.

4.3. Realizing Cognitive User Models 102

5 Implementation

This chapter deals with the implementation of the cognitive intelligent user model based on the concepts

of the previous chapter. Because hierarchical Bayesian models were chosen as the modeling tool, a

software library was necessary that allows for computing Bayesian inference and implementing Bayesian

models. Such a framework is the probabilistic programming library PyMC3 for Python, which is presented

in the first chapter. The second chapter provides an in-depth description of the developed Python package

CogIUM, which enables the user to build, train and validate cognitive user models based on HBMs. The

validation chapter takes up the most space and shows in detail the model comparison and the model

extension process. To better understand this chapter, knowledge about HBMs, Bayesian data analysis,

the MCMC procedure, predictive accuracy metrics and the CLT are helpful, all of which was provided in

previous sections.

5.1 Bayesian Inference with PyMC3 – Fourth Step of Bayesian Data Analysis

Probabilistic programming allow the formulation of inference problems and the computation of their

solutions (Meent et al., 20182018). Probabilistic programming aims at offering a tool chain that supports

supervised, unsupervised, and semi-supervised inference. Meent et al. provide an in-depth introduction to

probabilistic programming that covers the basics from language design to evaluator implementation.

Today, there exist multiple software packages that allow probabilistic programming and computation.

The most common are a) Stan11—for which many interfaces to popular programming languages exist,

for example RStan for R and PyStan for Python, b) JAGS22—mainly designed to work closely with R,

and c) PyMC333—the current version and successor of PyMC, implemented in Python. I decided to work

with PyMC3 because Python, as a programming language, is very common, widespread, and natively

supported by most operating systems, because PyMC3 is actively developed, very good supported, and

provides a lot of in-depth guides and helpful material. Besides, choosing a Python package allowed the

implementation to stay in a complete Python-only ecosystem without third-party dependencies because

the whole model logic and all helper functions are written purely in Python.

PyMC3 is a probabilistic programming package for Python that allows for building and fitting Bayesian

models using a variety of numerical methods, such as MCMC and variational inference (Salvatier et al.,

20162016). In addition, PyMC3 offers functionality for summarizing the output of the inference process and

for model diagnostics. PyMC3 makes Bayesian modeling as simple as possible, allowing the user to

focus on the scientific problem, rather than on the numerical methods. PyMC3 offers a large suite of

well-documented statistical distributions to choose from. It uses Theano44, a Python library that allows

for defining, optimizing, and evaluation of mathematical expressions, as the computational backend,

1 https://mc-stan.org/https://mc-stan.org/
2 http://mcmc-jags.sourceforge.net/http://mcmc-jags.sourceforge.net/
3 https://docs.pymc.io/https://docs.pymc.io/
4 http://deeplearning.net/software/theano/http://deeplearning.net/software/theano/

103

https://mc-stan.org/
http://mcmc-jags.sourceforge.net/
https://docs.pymc.io/
http://deeplearning.net/software/theano/

which provides fast expression evaluation, automatic gradient calculation, and GPU computing. PyMC3 is

extensible, so that the user can incorporate custom step methods and unusual probability distributions as

the need arises.

The development on PyMC began in 2003 and lasted until 2006 with the aim to making MCMC more

accessible to applied scientists. David Huard, Anand Patil, and Chris Fonnesbeck began the development

on the next version, PyMC2, in 2006 and development went on until 2013. With the help of John Salvatier,

PyMC3 was first released 2015. The latest release of PyMC3 is version 3.0 from January 2017. For an

introduction to PyMC3 see Salvatier et al. (20162016).

5.1. Bayesian Inference with PyMC3 104

Example: A Simple PyMC3 Model
Working with PyMC3 is really easy and straight forward (Listing 5.15.1 on page 107107). In this example

we try to fit a uni-variate normal distribution to 100 observations drawn from the standard normal

distribution. Therefore, our model can be stated as y ∼ N (µ,σ). We set the standard deviation to

σ = 1, leaving the mean value µ as the only unknown latent variable here. Latent because µ is not

directly observable from the data and has to be inferred somehow.

The package itself is loaded into any Python program with the import pymc3 as pm command (line 2),

that imports the module and make it available via the ‘pm’-alias. A model is specified in PyMC3 by the

use of the Model class. Usually, the creation of a new model and the specification of the model happen

simultaneously as port of a with context (line 4). To build our model, we use the Normal distribution of

the PyMC3 package and specify the standard deviation with 1 and the mean value with some random

variable mu (line 6). In addition, we pass the observations to the Normal class so that PyMC3 knows that

this line is the likelihood of our model. All that is left to do is to specify the latent variable mu, which we

model as samples from a normal distribution with mean value 0 and standard deviation 1 (line 5). This

is the prior of our model for the parameter mu. This means that mu can, in principle, take any value from

the realm of the real numbers because the normal distribution is not restricted to any interval, but that

most of the mass of its probability distribution is initially centered around the value 0. Thus, our prior

believe is that the value of mu will be around this value. That is all we have to do to define the model.

Bayesian inference is than performed to approximate the posterior distribution. In this case we

use MCMC sampling (line 8). On default, PyMC3 uses the NUTS sampler for continuous variables, a

very efficient sampler even for complex models. There are more default settings like the number of

samples, the number of samples for the tuning phase, the number of chains, and so on. The result of

the Bayesian inference is stored in the trace variable, which represents a PyMC3 MultiTrace object.

The sampling process for this example took around one second for 1000 samples and four chains, that

are 4000 samples in total, without any warnings.

Having completed the inference, we are usually interested in the quality of the posterior’s approx-

imation and the shape of the posterior. The quality of the approximation can be visually analyzed

by the pm.traceplot(<trace>) function (line 10), which outputs for each parameter of the model the

posterior distribution and the traceplot of all chains (Figure 5.1a5.1a on the following page). The traceplot

shows no signs for diverging chains and the posterior distributions seem plausible. Another way to

check for diverging chains is to look at the so-called forestplot, created by the pm.forestplot(<trace>)

function (line 12) (Figure 5.1b5.1b on the next page). A value for R̂ = 1 indicates convergence of the

chains, as do the overlapping credible intervals. The summary statistics of the trace for each model

parameter can be conveniently printed out with the help of the pm.summary(<trace>) function (line 11).

The final result of the Bayesian inference is the posterior distribution, which can be plotted by calling the

pm.plot_posterior(<trace>) function (line 13) (Figure 5.1c5.1c on the following page). To further process the

samples gained during the inference process, one has access to all samples by calling trace.get_values(),

which accepts the parameter name as the first argument.

5.1. Bayesian Inference with PyMC3 105

0.2 0.0 0.2 0.4

0

1

2

3

4

Fr
eq

ue
nc

y

mu

0 100 200 300 400 500

0.2

0.0

0.2

0.4

Sa
m

pl
e

va
lu

e

mu

(a) Posterior distribution and traceplot as outputted by pm.traceplot(). (Left) Kernel density estimation of the
model parameter mu for each of the four chains. (Right) Traceplot for each of the four chains. All chains have
converged to the same region of the parameter space and the posterior approximations are similar.

1 2

R-hat

0.2 0.1 0.0 0.1 0.2

 mu

95% Credible Intervals

(b) Forestplot as outputted by pm.forestplot(). (Left) The 95 % credible intervals for all four chains. (Right) The
Gelman-Rubin R̂ statistic for the model parameter mu.

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

-0.164 0.223
95% HPD

mean=0.025

mu

(c) Posterior distribution as outputted by pm.plot_posterior(). The posterior distribution is visualized as histogram
over the samples from the MCMC sampler. Either the median or the mean value are shown as point estimate.
The 95 % HDI is shown with both its end points.

Figure 5.1.: Output for the PyMC3 example of Section 5.15.1 on the previous page, generated by Listing 5.15.1
on the following page.

5.1. Bayesian Inference with PyMC3 106

Listing 5.1: A simple, but fully functional example with PyMC3
1 import numpy as np

2 import pymc3 as pm

3

4 with pm.Model() as model:

5 mu = pm.Normal(’mu’, mu=0, sd=1)

6 obs = pm.Normal(’obs’, mu=mu, sd=1, observed=np.random.randn(100))

7

8 trace = pm.sample(1000, tune=500)

9

10 pm.traceplot(trace)

11 pm.summary(trace)

12 pm.forestplot(trace)

13 pm.plot_posterior(trace)

5.2 The CogIUM Python Package

A natural way in Python to structure code is with the help of custom modules and packages. A module55

is nothing more than a simple Python file containing definitions and statements. The filename is the

module name with the file ending .py. A module can contain executable statements and function

definitions. The statements are executed only the first time the module is imported via an import

statement. Functions are not directly executed but instead being imported explicitly either with the

from <module> import <function1>[, <function2>] statement or as a bulk import via from <module> import *,

though the last statement is considered bad practice. Thus, a custom module behaves exactly like a a

module from the Python standard library and working with custom modules is no different than working

with a standard module.

However, modules are not suited for larger projects when code is spread over multiple module

files. In this case, a namespace is desirable that unifies all module files under a shared namespace. This

is possible with Python packages66, which are a collection of modules that share a namespace. In a

Python package modules are addressed by “dotted module names”. For example, the module name A.B

designates a submodule B in a package named A. Submodule in this context means that the module is

part of a Python package, not that it is a module under another module, which is not possible in Python.

What is possible, however, is a nested package structure with subpackages under the main package. To

recognize a package, Python scans all directories for a __init__.py file. This file can be empty as well as

contain executable initialization code for the package or set the __all__ variable. The __all__ variable

allows a package author to define which submodules or subpackages are loaded when the user writes

from <module> import *.

The Python package I created for this thesis is named cogium, following the convention of

Python package names written only in all-lowercase, and encapsulates all necessary files to repro-

duce the Bayesian data analysis conducted as part of this thesis. The name of the package stands for

5 https://docs.python.org/3/tutorial/modules.htmlhttps://docs.python.org/3/tutorial/modules.html
6 https://docs.python.org/3/tutorial/modules.html#packageshttps://docs.python.org/3/tutorial/modules.html#packages

5.2. The CogIUM Python Package 107

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html#packages

cognitive intelligent user model (CogIUM) and I will use CogIUM throughout the rest of this work to

reference the package and the models it contains.

The structure of the CogIUM package is as follows:

.

cogium

model

BaseModel.py

CogiumImproved2Obs.py

CogiumImprovedHierarchical2Obs.py

CogiumImprovedHierarchical3Obs.py

CogiumOrig2Obs.py

__init__.py

__init__.py

generator.py

plots.py

utils.py

db

models

CogiumOrig2Obs

Improved2Obs

ImprovedHierarchical2Obs

ImprovedHierarchical3Obs

traces

CogiumOrig2Obs

Improved2Obs

ImprovedHierarchical2Obs

ImprovedHierarchical3Obs

docs

nb

output

ImprovedHierarchical3Obs

ModelComparison

MANIFEST.in

README.md

setup.py

cogium The directory cogium contains the actual Python package with a subpackage cogium.model that

holds the model definitions as class files, the submodule generator.py for the data generating

functionality, the submodule plots.py for the plotting functions, and the submodule utils.py

for minor helping functions used in the other submodules.

db The directory db contains the stored model files for a particular data set as well as the

associated traces from the PyMC3 runs. Each call of BaseModel::save() creates a new file in

5.2. The CogIUM Python Package 108

db/models/<model>/. Each call of the sample() method with parameter save_trace=True will

create a folder in db/traces/<model>/.

docs The directory docs contains the setup and auto-generated files from the Sphinx Documentation

Generator77.

nb The directory nb contains all Jupyter Notebooks88 developed during this thesis to run the

simulations.

output The directory output contains all the figures produced by the plotting functions, separated by

each model and data set.

setup.py The files MANIFEST.in, README.md and setup.py belong to a complete package setup for easier

distribution and installation99. The setup.py defines the meta data of the package and lists all

dependencies.

With this setup, local installation is quite simple. All that is needed is Python in the version 3.6 or

higher and the Python package installer pip. The package can be installed from the command line with

$ pip install . -e. The option -e installs the package with a symlink, so that changes to the source files

will be immediately available. pip will install all required dependencies and the CogIUM package. After

the installation you can verify a successful installation by running import cogium in a Python console, from

a Python script or a Jupyter Notebook. The CogIUM package should be locally available to you no matter

your current working location.

5.2.1 The data generator

The submodule generator.py of the CogIUM package provides a single function generate_observations().

This function allows the generation of expected observations gained from a learner’s interaction with the

game Lost Earth 2307. As described in section 4.2.14.2.1 on page 7878, observable variables differ in domain

and numerical type. Furthermore, as was discussed in section 4.3.24.3.2 on page 8888, the model not only

operates on a single observation gained from a single learner in a single mission, but supports multiple

observations from different learners and from multiple missions. Thus, generate_observations() uses

the NumPy data type ndarray to return a three dimensional array. The first dimension is the number

of subjects, the second dimension is the number of concepts/missions and the third dimension is the

number of observations. The third dimension suffices because all observations are modeled as scalar

values. Further, the data generator supports the split of subjects into distinct groups. To simulate different

groups, the data generator uses a Python dictionary (Listing 5.25.2 on page 111111) as mapping with the four

group levels ‘good’, ‘average’, ‘bad’, and ‘random’ as keys and the data generator functions as values. The

user can define the number of groups, as well as the kind of the group and the number of subjects for this

group.

The task success kpc is a binary variable of either 0 or 1. In the ‘good’ group, a subject has always a

task success of 1. In the ‘bad’ group, a subject has always a task success of 0. In both the ‘average’ and

‘random’ group, the subject has a random chance of a task success of 0 or 1.

7 http://www.sphinx-doc.org/en/master/http://www.sphinx-doc.org/en/master/
8 https://jupyter.org/https://jupyter.org/
9 https://setuptools.readthedocs.io/en/latest/setuptools.htmlhttps://setuptools.readthedocs.io/en/latest/setuptools.html

5.2. The CogIUM Python Package 109

http://www.sphinx-doc.org/en/master/
https://jupyter.org/
https://setuptools.readthedocs.io/en/latest/setuptools.html

k1,1 s1,1 t1,1

… … …

k5,1 s5,1 t5,1

k6,1 s6,1 t6,1

… … …

k20,1 s20,1 t20,1

Su
bj

ec
ts

Observable Variables

G
ro

up
 1

G
ro

up
 2

ℝ
20×3

kpc spc tpc

Su
bj

ec
ts

Observable Variables

G
ro

up
 1

G
ro

up
 2

kpc spc tpc

k1,2 s1,2 t1,2

… … …

k5,2 s5,2 t5,2

k6,2 s6,2 t6,2

… … …

k20,2 s20,2 t20,2

ℝ
20×3

(20, 2, 3)

Figure 5.2.: Explanation of the NumPy shape and data returned by the generate_observations() function
(Listing 5.35.3 on the next page). The function was called for 20 subjects, 2 concepts and 3
observable variables. Subjects were divided into 2 groups, with 5 and 15 members, respectively.
The left table holds all observations for the first concept, the right table all observations for
the second concept. The indices of each variable indicates the subject and the concept.

The mission score spc is modeled of as a continuous variable with values between the interval [0,1],
but in practice can only have integer values between 0,1, . . . , 10 and is divided by the maximum score of

10 to obtain a number that is limited to the range of [0,1]. In the ‘good’ group, a subject has a mission

score randomly drawn from the set {7,8, 9,10}. In the ‘average’ group, a subject has a mission score

randomly drawn from the set {3,4, 5,6, 7}. In the ‘bad’ group, a subject has a mission score randomly

drawn from the set {0,1, 2,3}. In the ‘random’ group, a subject has a mission score randomly drawn from

the complete range of possible values.

Finally, the mission time tpc is modeled as a continuous variable with a lower limit of 5 and no upper

limit. The time for each subject is generated by first randomly choosing a base time and than adding to

this base time a random number from a exponential distribution with λ= 2. In the ‘good’ group, a subject

has a mission time with a base line drawn from the range [5,10]. In the ‘average’ group, a subject has a

mission time with a base line drawn from the range [10, 15]. In the ‘bad’ group, a subject has a mission

time with a base line drawn from the range [15, 20]. In the ‘random’ group, a subject has a time mission

with a baseline drawn from the range [5,35].

For each concept the number of groups are given as a list of strings, indicating the group type, for

example [’good’, ’bad’]. How the subjects are split into the number of groups is specified as a list of

integers, indicating the number of subjects for the associated group, for example [10,20]. Listing 5.35.3 on

5.2. The CogIUM Python Package 110

the following page shows an example for the generation of observable data for 20 subjects, 2 concepts,

and 3 variables. For both concepts, the 20 subjects where divided into two groups with 5 and 15 subjects,

respectively. In the first concept, the first group type was ‘good’, and the second group type was ‘bad’.

The group type of the first group changed in the second concept to ‘average’, with the second group type

remaining ‘bad’. This call returns a NumPy array of shape (20,2, 3) and 120 values (Figure 5.25.2 on the

previous page). The result is simplified when there is only one concept, one subject or one observable

variable, as the associated dimension can be omitted and the resulting data structure is a matrix with

only two remaining dimensions instead of three. With the help of the data generator function all possible

combinations of observations can be created. To add a new observable variable, one has to extend the

mapping dictionary with a new key-value-pair that tells the function how to generate data for this new

observable variable.

Listing 5.2: The mapping of the generate_observations() function between group type and observation
value

1 mapping: Dict[str, Dict[str, Callable[[], float]]] = {

2 ’k_pc’: {

3 ’good’: lambda: 1.,

4 ’average’: lambda: np.round(np.random.rand()),

5 ’bad’: lambda: 0.,

6 ’random’: lambda: np.random.choice([0,1])

7 },

8 ’s_pc’: {

9 ’good’: lambda: np.random.randint(7, 11) / 10,

10 ’average’: lambda: np.random.randint(3, 8) / 10,

11 ’bad’: lambda: np.random.randint(0, 4) / 10,

12 ’random’: lambda: np.random.randint(0, 11) / 10

13 },

14 ’t_pc’: {

15 ’good’: lambda: np.random.randint(5, 10) + np.random.exponential(2),

16 ’average’: lambda: np.random.randint(10, 15) + np.random.exponential(2),

17 ’bad’: lambda: np.random.randint(15, 20) + np.random.exponential(2),

18 ’random’: lambda: np.random.randint(5,35)

19 }

20 }

Listing 5.3: An example call of the generate_observations() function
1 from cogium.generator import generate_observations

2

3 generate_observations(

4 20, 2, [’k_pc’, ’s_pc’, ’t_pc’], [[’good’, ’bad’], [’average’, ’bad’]], [[5, 15], [5, 15]]

5)

5.2. The CogIUM Python Package 111

5.2.2 The model subpackage

The subpackage model of the CogIUM package provides an abstract base class BaseModel. The base class

delivers all the functionality for a PyMC3 model like sampling, debug and draw possibilities, as well as

save and load methods for persistent storage of the model along with its traces. However, the base class

does not implement any statistical model yet. This happens in a subclass, which implements a particular

statistical model in its construction method. Each subclass expects as arguments the observable data and

the working memory capacity for this model. Because the observable data is part of the statistical model

in PyMC3, it is not possible to only instantiate a single model for all kinds of observable data, at least not

if the observations differ in their dimensionality. Therefore, a new model has to be instantiated whenever

the data changes. When a model is saved to the disk, the data for this model is hold in the self.data

attribute.

The CogIUM package provides four pre-defined models: CogiumOrig2Obs, Improved2Obs,

ImprovedHierarchical2Obs, and ImprovedHierarchical3Obs. The first three models were used to demon-

strate model comparison and model selection and to find the best model to describe the first two

observable variables task success kpc and mission score spc. ImprovedHierarchical2Obs is the best of the

tree models according to different model comparison metrics. The final model ImprovedHierarchical3Obs

is based on ImprovedHierarchical2Obs and extends it by modeling the observable variables mission time

tpc (Listing B.1B.1 on page 175175).

A model can either be built from scratch or loaded from a stored model in the db directory. Building

a new model is rather simple: all that is needed is to pass the observable data in the right format to

the constructor of the model class (Listing 5.45.4 on the next page). Because each model has a particular

likelihood function it can only accept observable data that fits to the number of observations that is

entailed in the model. However, if the number of observable variables is correct, the other dimensions of

the data can be changed arbitrarily, that is, the number of subjects, the number of groups and how the

subjects are split into groups as well as the number of concepts. Once a model has been built, the model

of an instance is always accessible via the model attribute. To fit a model to the observable data, one

has to call the sample() method of the model. This method is a wrapper around the PyMC4 pm.sample()

method, which saves the MultiTrace object returned by the MCMC sampler to the disk in a directory

db/traces/<model>/Y-m-d_H-M-S. After having fitted the model, the model itself can be saved to the disk,

too, preserving the Theano graph of the model as well as the trace object from the sample method. This is

done by calling the save() method of a model, which expects a filename. The save() method will save the

model as pickle file to disk under db/models/<model>/<filename> with file ending ‘.pkl’.

To meet the requirements that the models can deal with observable data of any dimensionality, that

is with arbitrary numbers of subjects and concepts, a lot of time went into the implementation of the

deterministic variables. The deterministic variables are indexed with pc, which stands for both subject

and concept. The shape of these variables has to match the number of subjects as well as the number of

concepts if both dimensions are greater than one. However, all personal variables are vectors of Rp×1 as

well as all conceptual variables are vectors of Rc×1, whereas the deterministic variables had to be of Rp×c,

so each row is one subject and each column is the value for a concept. According to the equations for the

deterministic variables, personal and conceptual variables are combined to obtain the pc variables, which

5.2. The CogIUM Python Package 112

means that vectors of different lengths had to be combined. This was solved by using the outer product of

two vectors, also called a tensor product, which is available in Theano as theano.tensor.outer(u,v) for

two vector variables u, v . The outer product is defined as u ⊗ vvv = uvvv T . The outer product of two vectors

u, v with dimensions p and c will result in a p× c matrix, which is exactly what is needed here.

Listing 5.4: An example setup of all four models of the CogIUM package.
1 from cogium.model import *
2 from cogium.generator import generate_observations

3

4 wm_capacity = 7

5 # setup for model 1-3

6 data = generate_observations(20, 1, [’k_pc’, ’s_pc’], [[’good’]], [[20]])

7

8 model1 = CogiumOrig2Obs(data, wm_capacity)

9 model2 = CogiumImproved2Obs(data, wm_capacity)

10 model3 = CogiumImprovedHierarchical2Obs(data, wm_capacity)

11

12 #setup for model 4

13 data = generate_observations(20, 1, [’k_pc’, ’s_pc’, ’t_pc’], [[’good’]], [[20]])

5.2.3 The plots

A lot of effort and time went into the plotting functions. They allow for analyzing the results of the MCMC

sampler, of the posterior distribution for different traces, subjects and concepts as well as for different

groups, of the posterior predictive distribution and for comparing different models with respect to the

RMSE and MAE error. All plots can be highly customized via optional arguments and can be saved to disk

as PDF files. Most plotting functions accept either a trace object or a list of trace objects, allowing for an

easier model comparison.

I will summarize quickly each plot function and give one example of the produced plot, although it

is not possible to show all combinations of parameters because the plots are sophisticated and support

many different parameter combinations like plots for one trace object or comparison plots for a list of

trace objects, all realized with the same plot function.

plot_trace_summary This function accepts a trace object or a list of trace objects and produces three

histograms for each trace object or model: the ESS value, the value of the potential scale reduction

R̂ and the MCMC standard error value (for an exemplary output see Figure B.1B.1 on page 170170). These

statistics can be plotted for a single or multiple variables, passed as a list of variable names to the

function. If the list is empty, then the statistics will be computed over all variables contained in

the trace object. With the help of this function the quality of the MCMC approximation of the true

posterior distribution can be estimated and visually analyzed. To directly inspect the trace plots for

single variables, use the PyMC3 traceplot() function.

plot_posterior This functions accepts a trace object or a list of trace objects, a variable name, and the

row id, which is the id of the subject for both personal and personal plus conceptual variables and

5.2. The CogIUM Python Package 113

BaseModel

+ storage: Dict
+ data: np.ndarray = None
+ traces: List = None
+ model: pm.model.Model = pm.Model()
+ name: str = ''

+ sample(...): pm.MultiTrace
+ debug()
+ draw()
+ save()
+ load(str): pm.model.Model
+ load_traces(): List

Extends

Model

+ name: str

+ Model(np.ndarray, int)

Figure 5.3.: UML class diagram for the model classes in the CogIUM package. All concrete models are
implemented as subclasses of BaseModel which provides all functionality. Each subclass defines
the statistical model with PyMC3 within the __init__() method, the constructor in Python. np
is the alias for the NumPy package, pm is the alias for the PyMC3 package.

the id of the concept for conceptual variables, and produces a histogram for each row id along with

the 95,% HDI and, if specified, the prior distribution for easier comparison of prior and posterior

distribution (for an exemplary output see Figure B.2B.2 on page 170170). This function allows for visually

analyzing the posterior distribution for each model parameter and subject along with the model

parameters’ credible intervals.

show_group_differences This functions accepts a trace object, a variable name, and a list of cutpoints

where subjects were split into groups (for an exemplary output see Figure B.4B.4 on page 172172). If

there was only one group in the data, then the list of cutpoints is left empty. This function is more

sophisticated than other plotting functions and produces two outputs. First, one plot that uses box

plots to show the values of the posterior distribution for each subject and, in addition, marks the

group boundaries so that differences between subjects of different groups can be visually analyzed.

Secondly, a more condensed plot of the group differences by aggregating the variable in question

over all subjects of one group and only plotting the mean values for this group over all samples. This

function helps in analyzing the posterior distribution for inter-individual differences and whether

the model was able to model group differences represented in the observable data by different

group types. However, this function can only plot group differences for a given concept id, so to

compare different concepts, the function has to be called for each concept id.

show_concept_differences This function accepts a trace object and a variable name and, like the second

plot of show_group_differences(), plots the distribution of the mean values over all subjects for each

concept into one plot (for an exemplary output see Figure B.3B.3 on page 171171). Thus, group differences

5.2. The CogIUM Python Package 114

are no longer visible and combined into one mean over all subjects of one sample of the trace

object. However, if the value for the variable differ systematically for all subjects between conditions,

this plot helps identify the effect of the condition. This function is only suitable for variables with

index pc and helps in analyzing the model’s performance for different concepts contained in the

observable data.

plot_posterior_predictive This function accepts an observable data array, a posterior predictive sample

trace object, a variable name, a list of cutpoints, and the observable variable id (for an exemplary

output see Figure B.5B.5 on page 173173). This function is more sophisticated than other plotting functions

and produces to outputs to conduct a visual posterior predictive check. The first plot is based on the

show_group_differences() function, but now based on the model’s posterior predictive distribution

and extended by marking the true value for each subject. The second plot is a comparison of the

observable data with the predictions of the model. The better the model the closer the predictions to

the observations. For a better comparison the single predictions are condensed to a mean prediction

curve that can be compared with the observable curve. With both plots it is possible to analyze how

close the model’s predictions, gained from the posterior predictive distribution, are in comparison to

the original observable data.

plot_predictive_error This function accepts a list of models, a list of posterior predictive trace objects, the

observable data, the observable variable ids, and a list of measures and produces for each model and

given observable variable the prediction error calculated by the given measure (for an exemplary

output see Figure B.6B.6 on page 174174). The function calculates the model’s prediction error for each

observable variable with the given measure, supported are RMSE for continuous variables and MAE

for categorical variables. The function allows the comparison of different models based on their

prediction error but does not account for model complexity.

5.3 Validation – fifth step of Bayesian data analysis

I presented the concept of different hierarchical Bayesian models analyzed and compared in this thesis

in section 4.3.24.3.2 With (hierarchical) Bayesian modelsWith (hierarchical) Bayesian models (page 8888) as well as their basic implementation in

section 5.25.2 The CogIUM Python PackageThe CogIUM Python Package (page 107107). This section is dedicated to the model comparison

and selection process that led to the best model, to the process of extending the model to new observable

variables, and to an extended model validation of the best found model. In the discussion of this section I

will recapitulate the process of model selection and model validation, address open or unsolved questions

and talk about the difference between model validation and model evaluation.

5.3.1 Model comparison – a case study

In this section I will describe the process from modelM1 over modelM2 to modelM3, the results that

led to the modifications between the models and how the models performed against each other. To keep

the presentation of the material as as compact as possible, I will present only a few number of key figures

that allow for a visual analysis of the three models’ performances. All figures in this section will present

the findings of all three models to allow for a direct comparison. However, M1 was the first model I

5.3. Validation 115

Table 5.1.: Overview of the data sets used in the model comparison process.

Data Set N Np Nc Ng Group Types Splits

D1 200 100 1 2 [‘good’, ‘bad’] [50, 50]
D2 100 50 1 3 [‘good’, ‘average’, ‘bad’] [10,30, 10]
D3 200 50 2 2 [‘good’, ‘average’], [‘average’, ‘bad’] [25,25], [25, 25]
D4

1010 200 50 2 2 [‘good’, ‘bad’], [‘bad’, ‘good’] [25,25], [25, 25]
D5 180 30 3 1 [‘good’], [‘average’], [‘bad’] [30], [30], [30]
N : total number of observations, Np: number of subjects, Nc: number of concepts, Ng number of groups per concept.

analyzed and based on its inadequacy to capture the structure of the observable variable mission score spc,

modelM2 was designed. As intended, modelM2 showed an improved performance for spc, but was still

not capable of capturing all the structure of the observable variable. That is why modelM3 was designed

as a hierarchical model for explaining spc.

The comparison of the three models was conducted with five different data sets (Table 5.15.1). I will

mainly talk about and present figures for data set D2, a data set with 50 subjects, one concept, and three

different groups, with two groups of size 10 and one group of size 30. The results for all five data sets are

reported at the end of this section.

Performance ofM1

The first model implemented in this thesis was the original model, which is called CogiumOrig2Obs in

the CogIUM package, and named M1 throughout this thesis. The model details can be revisited in

section 4.3.24.3.2 ModelM1 – original CogIUM for two observationsModelM1 – original CogIUM for two observations (page 9494) and Table A.1A.1 on page 168168.

M1 models kpc and spc as a cause of gclpc and δpc, but uses no further variables. M1 is the simplest

of the three models. But the model is able to capture the structure of the observable variable task success

kpc, as the results from the posterior predictive check show (Figures 5.95.9 and 5.115.11 on page 125125 and on

page 127127). It is not a 100 % match, but the model predicts the right value for kpc for the first group (kpc

always 1) in roughly 80 % of all simulations, for the third group (kpc always 0) in roughly 60 % of all

simulations, and for the second group (kpc either 0 or 1) in either 80 % or 60 % of all simulations. So it

seems that model is better in explaining values for kpc that are equal to 1 than for values that are equal

to 0, because the accuracy is always 20 % less. However,M1 is not able to capture the structure of the

observable variable mission score spc at all (Figures 5.105.10 and 5.115.11 on page 126126 and on page 127127). The

distribution of values for spc from the model’s simulation are more or less identical for all subjects, which

is consolidated by averaging over all 1000 samples of the posterior predictive distribution: the averaged

distribution has a single peak and cannot reproduce the structure in the observable data. In addition,

the standard deviation or IQR in the box plots is rather high and leads to a distribution for each subject

that covers the whole range of possible values for spc. I concluded from these findings, thatM1 is good

enough in capturing the essence of kpc, but not for spc. Further analysis ofM1 revealed that it did not

make use of all model parameters. Prior knowledge ψp and motivation mp were nearly identical for all

10 Data set D4 is contradictory on purpose, as explained in section 5.3.15.3.1 Final model comparison and model selectionFinal model comparison and model selection (page
128128).

5.3. Validation 116

subjects and groups (Figures 5.45.4 to 5.65.6 on pages 121121–120120). There were small differences in GCL gclpc,

but nearly none in free working memory capacity δpc (Figures 5.45.4, 5.75.7 and 5.85.8 on pages 123123–120120).

Performance ofM2

Therefore, I decided to reparameterize the observable variable spc inM2. I assumed the main problem in

M1 with spc was the choice of the beta distribution, because there is no separate parameter for a standard

deviation. In addition, the beta distribution is quite flat for small parameter values of a, b, which is the

case inM1 because gclpc and δpc, which govern the values of a, b, are both limited to a small range. As a

result of these considerations, a second modelM2, which is called CogiumImproved2Obs in the CogIUM

package, was implemented and tested, which tries to tackle some of the aforementioned problems ofM1.

The model details can be revisited in section 4.3.24.3.2 ModelM1 – original CogIUM for two observationsModelM1 – original CogIUM for two observations

(page 9494) and Table A.1A.1 on page 168168.

Changing the distribution for spc from a beta distribution to a normal distribution allows spc to be

centered around a mean value with a standard deviation, which seems a more appropriate choice to

reduce the variance in the model’s predictions. As a drawback, instead of the beta distribution, which

was naturally limited to values between the range of zero and one, the normal distribution has no such

limitations. However, because spc is an observable variable and thus part of the model’s likelihood, it

is the task of the Bayesian inference to find parameter values that will restrict the normal distribution

to a plausible range in accordance with the observations. If this is not possible, then the model is not

well specified. Regarding the model’s performance, the first thing that can be noticed is thatM2 is now

worse thanM1 with regard to kpc (Figures 5.95.9 and 5.115.11 on page 125125 and on page 127127). The accuracy

of the predicted values for kpc in the first group is reduced from roughly 80 % to 60 %. However,M2

is visually significantly better in predicting spc (Figures 5.105.10 and 5.115.11 on page 126126 and on page 127127).

The individual box plots are closer to or even contain the true value and the average of all simulated

predictions resembles closer the distribution of the observations. Regarding the model’s performance

with respect to different groups, the posterior predictive check allows the conclusion thatM2 is able to

capture the structure of spc for moderate values – all box plots for the subjects of the “average” group

contain the true value –, but fails to capture the structure of spc for extreme values near the limit of

the domain – most box plots for subjects of the “good” as well as the “bad” group do not contain the

true value. And when we have a look at the IQR or standard deviation, respectively, of the predicted

values, then we notice that the IQR are still relatively wide, covering nearly the whole range of possible

values. The better performance ofM2 can be explained by the reparametrization which led to a greater

inter-individual and inter-group difference in the model parameter motivation mp, but not for prior

knowledge ψp (Figures 5.45.4 to 5.55.5 on pages 121121–120120). Because mp has an influence on gclpc,M2 also

shows inter-individual as well as inter-group differences in gclpc, but likeM1 still not for δpc—which

means, that this model parameter is still not used, or needed, by the model to explain the observations

(Figures 5.45.4, 5.75.7 and 5.85.8 on pages 123123–120120). However, it is noticeable that the width of the posterior

distribution for δpc is much larger for all individuals. This is due to the fact that inM2, the posterior

distribution for iclc has a 95 % HDI ranging from 8.35 to 41.46 with a mean value of 22.76, which is

much higher than in modelM1. This can be interpreted as follows: M2 tries to explain the differences

5.3. Validation 117

seen in the observable variables kpc and spc from data set D2 by setting the difficulty of the learning

material, represented by iclc, much higher thanM1 did. This automatically increases the total cognitive

load clpc, which is the sum of ECL and ICL. By adjusting the motivation mp for individuals of different

groups,M2 is able to explain the observations in modeling subjects from the “good” group with a high

motivation, subjects from the “average” group with an average motivation and subjects from the “bad”

group with a low motivation, because motivation influences the value of gclpc, which is the mean value

for spc in modelM2.

So there are a few issues left with modelM2: the nearly identical values of δpc across all subjects,

the implausible high value for iclc, which improves the model’s performance but is not very likely to

reflect the real world, the worse performance regarding kpc, and the variance of the model’s predictions

that are still too high across all subjects.

Performance ofM3

To further improve the performance ofM2 regarding the observable variable spc, I decided to model spc

hierarchically. InM2, spc is modeled with a mean value that directly and completely depends on gclpc. To

improve the model’s flexibility, I chose a new parametrization where spc remains normally distributed, but

depends on both the values of gclpc and δpc. In addition, the impact of δpc is governed by a multiplicative

factor νs, which is modeled as personal group variable. With this modification the new model is allowed to

alter the mean value of the normal distribution that generates spc, given by gclpc, according to the value of

δpc. A positive value of δpc further increases spc, counterbalancing lower values of gclpc. A negative value

of δpc has the opposite effect and decreases spc, negating the effects of a higher value for gclpc. As a result

of these considerations, a third modelM3, which is called CogiumImprovedHierarchical2Obs in the CogIUM

package, was implemented and tested, which tries to tackle some of the aforementioned problems ofM2.

The model details can be revisited in section 4.3.24.3.2 ModelM1 – original CogIUM for two observationsModelM1 – original CogIUM for two observations

(page 9494) and Table A.1A.1 on page 168168.

Regarding the observable variable kpc, modelM3 is back to the performance level ofM1, in fact,

M3 is in some cases even above the 80 % accuracy for the first group (Figures 5.95.9 and 5.115.11 on page 125125

and on page 127127). A real improvement was achieved in the model’s performance regarding spc. The model

is not only able to reproduce the structure of spc seen in the observable data for every subject, but also has

a reduced variance for its predictions (Figures 5.105.10 and 5.115.11 on page 126126 and on page 127127). The average

distribution of the model’s predictions is very close to the distribution of the observable variable and

matches all structural characteristics. The reparametrization fromM2 toM3 led to further differences

in how the model latent variables were used to explain the observations. Like inM2 motivation differs

between individuals and between groups (Figures 5.45.4 and 5.55.5 on page 121121 and on page 120120). As a result

of the motivational differences, we see similar differences in the values for gclpc (Figures 5.45.4 and 5.75.7

on page 123123 and on page 120120). However, for the first time prior knowledge ψp also differs between

individuals, and most notably, between groups (Figures 5.45.4 and 5.65.6 on page 122122 and on page 120120). As

prior knowledge influences the cognitive load imposed by iclc, as a direct consequence the total load

clpc and with it the value for free working memory δpc is changed, too (Figures 5.45.4 and 5.85.8 on page 124124

and on the next page). ModelM3 is the only model that shows these differences in prior knowledge

and free working memory capacity. The posterior distribution for iclc has a 95 % HDI ranging from

5.3. Validation 118

5.05 to 13.69 with a mean value of 9.43, which is considerably smaller than the value inM2. So the

behavior ofM3 can be interpreted as follows: The model uses both motivation mp and prior knowledge

ψp to accommodate the model’s predictions with the observations. Subjects in the “good” group are

characterized by a high value for motivation as well as a larger prior knowledge. This results in more free

working memory capacities δpc as well as a greater amount of working memory resources gclpc dedicated

to learning. The opposite is true for subjects of the “bad” group, where low values for mp and ψp result in

lower values for gclpc and δpc, which reduces overall performance.

All relevant figures that were referenced in the previous text are listed on the next pages. For a better

readability they are presented en bloc. All figures have the same structure and are explained further in

the appendix. The next section follows after the last figure of this block.

5.3. Validation 119

0.0 0.2 0.4 0.6 0.8 1.0
mp

0

2

4

6

8

10

12

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
mp

0

2

4

6

8

10

12

14

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
mp

0

2

4

6

8

10

12

14

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
p

0

2

4

6

8

10

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
p

0

2

4

6

8

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
p

0

2

4

6

8

10

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
gclpc

0

1

2

3

4

5

6

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
gclpc

0

2

4

6

8

10

12

14

16

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
gclpc

0

1

2

3

4

5

6

7

8

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n
Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

4 3 2 1 0 1
pc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

4 3 2 1 0 1
pc

0.0

0.2

0.4

0.6

0.8

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

4 3 2 1 0 1
pc

0

1

2

3

4

5

6

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.4.: Group differences in the posterior distribution for four variables and three models, based on
data set D2. Shown are the distributions of the group means. (Top) Motivation mp. (Second
top) Prior knowledgeψp. (Second bottom) GCL gclpc . (Bottom) Free working memory capacity
δpc . (Left)M1. (Middle)M2. (Right)M3. For further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 120

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

m
p

[0
,1

]
Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

m
p

[0
,1

]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

m
p

[0
,1

]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.5.: Individual differences in the posterior distribution for personal variable motivation mp, based
on data set D2. The posterior distribution is shown as box plot for each subject, colored
according to the subject’s group membership. (Top)M1. (Middle)M2. (Bottom)M3. For
further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 121

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

p
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

p
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

p
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.6.: Individual differences in the posterior distribution for personal variable prior knowledgeψp,
based on data set D2. The posterior distribution is shown as box plot for each subject, colored
according to the subject’s group membership. (Top)M1. (Middle)M2. (Bottom)M3. For
further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 122

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

gc
l p

c
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

gc
l p

c
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

gc
l p

c
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.7.: Individual differences in the posterior distribution for deterministic variable GCL gclpc, based
on data set D2. The posterior distribution is shown as box plot for each subject, colored
according to the subject’s group membership. (Top)M1. (Middle)M2. (Bottom)M3. For
further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 123

Subject 1 to 50
4

3

2

1

0

1

pc
R

1

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
4

3

2

1

0

1

pc
R

1

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
4

3

2

1

0

1

pc
R

1

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.8.: Individual differences in the posterior distribution for deterministic variable free working
memory capacity δpc, based on data set D2. The posterior distribution is shown as box plot
for each subject, colored according to the subject’s group membership. (Top)M1. (Middle)
M2. (Bottom)M3. For further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 124

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy
Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 10]
k_pc = 0, N = [1, 10]
k_pc = 1, N = [11, 40]
k_pc = 0, N = [11, 40]
k_pc = 1, N = [41, 50]
k_pc = 0, N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy

Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 10]
k_pc = 0, N = [1, 10]
k_pc = 1, N = [11, 40]
k_pc = 0, N = [11, 40]
k_pc = 1, N = [41, 50]
k_pc = 0, N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy

Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 10]
k_pc = 0, N = [1, 10]
k_pc = 1, N = [11, 40]
k_pc = 0, N = [11, 40]
k_pc = 1, N = [41, 50]
k_pc = 0, N = [41, 50]

Figure 5.9.: Posterior predictive check for observable variable task success kpc , based on data set D2. Each
row shows the model’s predictions for each subject. (Top)M1. (Middle)M2. (Bottom)M3.
For each subject 1000 samples were drawn from the model’s posterior predictive distribution.
Because kpc is a discrete variable, the class frequencies are shown for each subject. The true
value is marked. For further explanations see Figure B.5B.5 on page 173173.

5.3. Validation 125

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]
Posterior Predictive Distribution per Subject

observation
N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.10.: Posterior predictive check for observable variable mission score spc, based on data set D2.
Each row shows the model’s predictions for each subject. (Top)M1. (Middle)M2. (Bottom)
M3. For each subject 1000 samples were drawn from the model’s posterior predictive
distribution. Because kpc is a discrete variable, the class frequencies instead of a box plots are
shown for each subject. The true value is marked. For further explanations see Figure B.5B.5 on
page 173173.

5.3. Validation 126

0.0 0.2 0.4 0.6 0.8 1.0
Task Success: kpc

0

2

4

6

8

10

12

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0

1

2

3

4

5

6

7

8

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Task Success: kpc

0

2

4

6

8

10

12

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity
Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Task Success: kpc

0

2

4

6

8

10

12

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

Figure 5.11.: Posterior predictive check for two observable variables and three models, based on data
set D2. Each row shows the posterior predictive check for one model. (Top)M1. (Middle)
M2. (Bottom)M3. (Left) Task success kpc. (Right) Mission score spc. For each subject 1000
samples were drawn from the model’s posterior predictive distribution. Each subplot shows
the distribution of single samples as well as the model’s average prediction. For further
explanations see Figure B.5B.5 on page 173173.

5.3. Validation 127

Final model comparison and model selection

In the three previous sections I discussed in detail the performances of all three modelsM1,M2, andM3

with respect to the data set D2. However, the analyses was mainly based on a visual inspection of the

posterior predictive distribution in comparison with the observable data. Besides, D2 was not the only

data set that was analyzed during this phase of the implementation, but instead five data sets were tested,

as mentioned in Table 5.15.1 on page 116116.

I will continue with the presentation of three common and appropriate metrics for model comparison

and model selection: root mean squared error (RMSE), Watanabe-Akaike or widely available informa-

tion criterion (WAIC) and leave-one-out cross-validation (LOO-CV). They were already introduced in

section 3.23.2 Model Evaluation and Model ComparisonModel Evaluation and Model Comparison (page 5858), so that I will limit the presentation to

the results of the calculations and their implications for model selection.

I begin with the presentation of mean absolute error (MAE) values for kpc and RMSE values for spc

(Figure 5.125.12 on the next page). To compute RMSE and MAE, I first computed the single prediction errors

for 1000 samples drawn from the model’s posterior predictive distribution. Afterwards, I took the mean

of the MAE and RMSE values of the single samples to obtain the average value for the model. ModelM1

has the lowest MAE for kpc in one of five cases, for data set D4. ModelM2 has the lowest MAE for kpc in

one of five cases, for data set D5. In all other cases, ModelM3 has the lowest MAE for kpc. M1 has the

lowest RMSE for spc in one of five cases, for data set D4. M2 never has the lowest RMSE for spc, so model

M3 has the lowest RMSE for spc in all other four cases. In general, differences in MAE are quite small, but

the differences in RMSE are up to one order of magnitude.

As was discussed in section 3.23.2, RMSE does not use the full information available with the posterior

distribution. WAIC and LOO-CV are fully Bayesian approaches to estimate the within-sample predictive

accuracy of a model. When comparing multiple models we prefer the model with the highest predictive

accuracy, which refers to the lowest values for WAIC and LOO-CV. The computed values for WAIC and

LOO-CV are reported for all five data sets and all three models (detailed overview of the results from the

PyMC3 functions pm.waic() and pm.loo() are given in Table 5.25.2 on page 131131, a graphical summary is given

in Figure 5.135.13 on the next page). Models are sorted ascending so that the best model according to the

given predictive accuracy metric is listed first. pValue describes the effective number of parameter for both

metrics and can be interpreted as a measure of the model’s complexity. Thus, WAIC and LOO-CV naturally

account for the model’s complexity. If a best model, that is, a model with the lowest value according to

WAIC or LOO-CV, has a sufficiently large distance from the other two models, its Akaike weight is zero

and it is supposed to describe the data best according to the reported metrics. If, however, the models

are not clearly separated, as measured by dWAIC and dLOO-CV, then the Akaike weights can be interpreted

as the probability that modelMi is the best model with regard to the given metric (Wagenmakers and

Farrell, 20042004). ModelM1 is the best model according to both WAIC and LOO-CV in one of five cases, for

data set D4. ModelM2 is the best model according to both WAIC and LOO-CV in one of five cases, for

data set D5. ModelM3 is the best model according to both WAIC and LOO-CV for three out of five cases,

for the data sets D1,D2, and D3. The order of the models is for both WAIC and LOO-CV the same in four

of five cases, only for data set D2 the order ofM1 andM2 differs between the two metrics.

5.3. Validation 128

D1 D2 D3 D4 D5
Data Set

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Po
st

er
io

r P
re

di
ct

iv
e

Er
ro

r

Accuracy Measure: MAE, Observation: kpc

D1 D2 D3 D4 D5
Data Set

0.0

0.1

0.2

0.3

0.4

0.5

Accuracy Measure: RMSE, Observation: spc

model
M1
M2
M3

Figure 5.12.: Posterior predictive error for all three models and for all five data sets. (Left) MAE for task
success kpc . (Right) RMSE for mission score spc . Smaller values are better.

D1 D2 D3 D4 D5
Data Set

150

100

50

0

50

100

150

200

250

W
ith

in
-S

am
pl

e
Pr

ed
ict

iv
e

Ac
cu

ra
cy

Measure: WAIC

D1 D2 D3 D4 D5
Data Set

100

50

0

50

100

150

200

250

Measure: LOO-CV

model
M1
M2
M3

Figure 5.13.: Within-sample predictive accuracy for all three models and for all five data sets. (Left) WAIC.
(Right) LOO-CV. Smaller values are better.

5.3. Validation 129

With the results from both the posterior predictive error measures and the predictive accuracy

measures what can be said about the question of model selection? Which model should be preferred?

The RMSE measures are in favor for M3 for four of five data sets, most prominently for data set D1

with 100 subjects, two groups, and only one concept. The better predictive performance ofM3 is still

noticeable for data set D2, but becomes closer and closer to modelM2 for data sets with more concepts,

like in D3,D4, and D5. This relationship between the models is further substantiated with the results

of WAIC and LOO-CV. When there is only one concept, like in the data sets D1 and D2, modelM3 is

clearly favored with Akaike weights between 0.78 and 0.99. Only for the data sets D4 and D5 the model

is the least plausible and has an Akaike weight of zero. D4 is a special case because it is contradictory on

purpose: the data set contains two concepts and two groups, but the “good” group in the first concept

becomes the “bad” group in the second concept and vice versa. None of the models has the mechanics

to explain such data, they are confronted with the task to explain observations that are “impossible” for

them to re-create. This is because personal variables do not differ between concepts. The only two ways

for a model to explain the observation that a “good” subject becomes a “bad” subject is by assuming that

either the task has become more difficult (increase iclc, eclc, or both), or that the subject has become less

motivated or has less prior knowledge about the material (decrease mp, ψp or both). However, increasing

the difficulty of the learning material for concept two to explain the change of a “good” subject into

a “bad” subject increases difficulty for all subjects, and, because personal variables are fixed, cannot

explain the simultaneous change of a “bad” subject into a “good” subject, when difficulty was increased.

Likewise, decreasing a subject’s motivation or prior knowledge to explain the change of a “good” subject

into a “bad” subject applies to all concepts, because, again, all personal variables are fixed for a subject.

So the subject has to become worse in all concepts, not worse in one and better in another. This is a

very important consideration and can only be overcome by allowing personal variables to differ between

concepts, which means that personal variables have to become variables with an index pc. I will come

back to this when talking about model extensions in section 5.3.25.3.2 Model extension – a case studyModel extension – a case study (page

132132). For the purpose of this section, data set D4 is intended to be hard for the more specialized models

M2 andM3, and it is in accordance with the theoretical assumptions that the simplest modelM1 has

the best predictive accuracy for this data set. Therefore, only data set D5 poses a problem for selecting

modelM3 as the best model, because this data set has three concepts with only one group, but represents

plausible observable data. The reason why I decided to select the modelM3 as the best model of the

three models discussed so far is that the main focus of the reparametrizations that led to the modelsM2

andM3 was to improve the predictive performance with respect to spc based on data set D2. Therefore,

the focus was on supporting individual differences in the personal variable and not in the conceptual

variable. With this in mind,M3 is the best model. To overcome the problems that arise with data set D5,

further adaptations of the model are needed, mainly to allow personal variables to change over time, that

is, differ between concepts.

5.3. Validation 130

Table 5.2.: Within-sample predictive accuracy measures WAIC and LOO-CV for different models and data
sets. Models are sorted ascending by criterion value, so best model is listed first. For an
explanation of the table header see1111. For a graphical version see Figure 5.135.13 on page 129129.

Data Set Model Criterion Value pValue dValue wAkaike SE dSE Warning

D1 M3 WAIC −138.22 100.86 0 0.85 23.70 0 1

M1 −23.53 45.93 114.69 0.15 32.96 25.64 1

M2 213.91 45.50 352.13 0 6.16 21.28 1

M3 LOO-CV −88.64 125.65 0 0.78 20.66 0 1

M1 −12.17 51.61 76.47 0.22 33.03 25.28 1

M2 221.15 49.12 309.79 0 6.37 18.32 1

D2 M3 WAIC −25.60 57.95 0 0.99 16.14 0 1

M2 48.94 31.75 74.54 0 10.31 9.15 1

M1 49.85 20.61 75.46 0.01 14.85 15.50 1

M3 LOO-CV −4.97 68.26 0 0.94 14.95 0 1

M1 54.06 22.71 59.03 0.06 14.57 15 1

M2 63.72 39.14 68.69 0 10.71 9.58 1

D3 M3 WAIC −30.70 65.29 0 0.75 22.13 0 1

M2 −9.81 51.13 20.89 0.01 20.50 10.90 1

M1 6.40 31.36 37.10 0.24 29.21 27.26 1

M3 LOO-CV −2.99 79.14 0 0.44 22.47 0 1

M2 2.77 57.42 5.76 0.29 20.86 10.18 1

M1 11.84 34.08 14.83 0.28 28.93 26.99 1

D4 M1 WAIC 31.62 50.09 0 1 28.57 0 1

M3 243.66 48.39 212.04 0 7.54 30.98 1

M2 264.80 41.95 233.17 0 6.08 31.10 0

M1 LOO-CV 44.08 56.32 0 1 28.61 0 1

M3 253.10 53.11 209.02 0 7.97 30.89 1

M2 272.25 45.67 228.17 0 6.40 30.87 1

D5 M2 WAIC −76.09 30.98 0 0.74 17.07 0 1

M1 −71.07 13.60 5.02 0.26 35.50 34.65 0

M3 −29.48 46.03 46.61 0 19.39 7.47 1

M2 LOO-CV −69.68 34.19 0 0.73 17.27 0 1

M1 −69.02 14.62 0.66 0.27 35.53 34.80 1

M3 −16.71 52.41 52.97 0 19.59 7.75 1

11 https://docs.pymc.io/notebooks/model_comparison.htmlhttps://docs.pymc.io/notebooks/model_comparison.html. pWAIC and pLOO are both reported in pValue. dWAIC and dLOO are
both reported in dValue. weight is renamed to wAkaike. dSE is renamed to dSE. var_warn and shape_warn are both reported in
Warning.

5.3. Validation 131

https://docs.pymc.io/notebooks/model_comparison.html

5.3.2 Model extension – a case study

The best model according to the model comparison and model selection process, described in the previous

section, is modelM3. As was explained earlier, “best” is not to be understood in absolute terms but has

many limitations and constraints. But for the given predictive accuracy metrics, the observable variables

task success and mission score, and not too many concepts,M3 is the best model out of the three analyzed

models.

However, M3 does not support all observable variables yet. In this section I will describe the

process of extendingM3 to incorporate a model for the mission time. Due to time limitations it was not

possible to implement a model that supports all observable variables that were identified in section 4.2.14.2.1

Identify the dataIdentify the data (page 7878). This is part of the future work.

As described earlier, mission time tpc is a continuous variable and, unlike spc, can take on any positive

value. tpc is assumed to be measured in minutes. I assumed tpc to be composed of a minimal mission

time, fixed for a given concept, and two additive components that are dependent on gclpc and δpc. The

influence of the deterministic variables is mitigated by two multiplicative factors αt and βt , which are

modeled as personal group variables. This is very similar to the way the original moel for spc was extended

to a hierarchical model inM3. As a result of these considerations, a fourth modelM4, which is called

CogiumImprovedHierarchical3Obs in the CogIUM package, was implemented and tested. The model details

can be revisited in section 4.3.24.3.2 ModelM4 – hierarchical CogIUM for three observationsModelM4 – hierarchical CogIUM for three observations (page 9999) and

Table A.1A.1 on page 168168.

Data set D6, which is identical to D2 but with values for tpc, will be the data set on which the posterior

predictive check is based on. I will present the same plots for M4 as in the previous sections for the

other three models to allow for comparison. Inter-individual and inter-group differences are shown for

motivation mp, prior knowledge ψp, GCL gclpc, and free working memory capacity δpc (Figures 5.145.14

and 5.155.15 on the next page and on page 134134). The posterior predictive check is shown for the three

observable variables task success kpc, mission score spc, and mission time tpc (Figures 5.165.16 and 5.175.17 on

page 135135 and on page 136136).

The posterior predictive check shows clearly thatM4 is able to capture the structure of the observable

variable tpc, which was the designated goal for this model. The true values for each subject are contained

in the central 50 % range of the model’s simulated data and the average distribution of all model’s

predictions matches the distribution of the observation. M4 is capable of capturing the essence of the

observable variable tpc while holding the performance of its predecessor with regard to the other two

observable variables spc and kpc. Furthermore, M4 assumes group differences as well as individual

differences for motivation, prior knowledge, GCL, and free working memory capacity, showing different

group mean distributions for all these variables.

5.3. Validation 132

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

m
p

[0
,1

]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

p
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

gc
l p

c
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
4

3

2

1

0

1

pc
R

1

Posterior Distribution per Subject

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.14.: Individual differences in the posterior distribution ofM4, based on D6. (Top) Motivation
mp. (Second top) Prior knowledgeψp. (Second bottom) GCL gclpc. (Bottom) Free working
memory capacity δpc . For further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 133

0.0 0.2 0.4 0.6 0.8 1.0
mp

0

2

4

6

8

10

12

14

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n mean = 0.86 mode = 0.87

mean = 0.77 mode = 0.77

mean = 0.57mode = 0.54

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
p

0

2

4

6

8

10

12

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

mean = 0.77 mode = 0.78
mean = 0.48 mode = 0.48

mean = 0.28mode = 0.27

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

0.0 0.2 0.4 0.6 0.8 1.0
gclpc

0

2

4

6

8

10

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

mean = 0.63 mode = 0.64

mean = 0.54mode = 0.53

mean = 0.34mode = 0.33

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

4 3 2 1 0 1
pc

0

1

2

3

4

5

6

7

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

mean = 0.39 mode = 0.40

mean = -0.09 mode = -0.07

mean = -0.42mode = -0.43

Group Differences in Posterior Distribution

N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.15.: Group differences in the posterior distribution ofM4, based on D6. (Top left) Motivation
mp. (Top right) Prior knowledgeψp. (Bottom left) GCL gclpc. (Bottom right) Free working
memory capacity δpc . For further explanations see Figure B.4B.4 on page 172172.

5.3. Validation 134

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy
Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 10]
k_pc = 0, N = [1, 10]
k_pc = 1, N = [11, 40]
k_pc = 0, N = [11, 40]
k_pc = 1, N = [41, 50]
k_pc = 0, N = [41, 50]

Subject 1 to 50
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 10]
N = [11, 40]
N = [41, 50]

Subject 1 to 50
0

5

10

15

20

25

t p
c

R
t m

in

Posterior Predictive Distribution per Subject

observation
N = [1, 10]
N = [11, 40]
N = [41, 50]

Figure 5.16.: Posterior predictive check of three observable variables for modelM4, based on data set D6.
(Top) Task success kpc . (Middle) Mission score spc . (Bottom) Mission time tpc . For each subject
1000 samples were drawn from the model’s posterior predictive distribution. Because kpc is
a continuous variable, class frequencies are shown for each subject. The true value is marked.
For further explanations see Figure B.5B.5 on page 173173.

5.3. Validation 135

0.0 0.2 0.4 0.6 0.8 1.0
Task Success: kpc

0

2

4

6

8

10

12

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

0 5 10 15 20 25 30
Mission Time: tpc

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

Figure 5.17.: Posterior predictive check for three observable variables for modelM4, based on data set
D2. (Top) Task success kpc. (Middle) Mission score spc. (Bottom) Mission time tpc. For each
subject 1000 samples were drawn from the model’s posterior predictive distribution. Each
subplot shows the distribution of single samples as well as the model’s average prediction.
For further explanations see Figure B.5B.5 on page 173173.

5.3. Validation 136

5.3.3 Extended model validation

The previous section explained the process of extending modelM3 to incorporate the observable variable

mission time tpc. The model that came out of this process isM4, the final model of this thesis.

Like with the models before,M4 was not only tested on data set D6, but on a variety of data sets

representing different characteristics of plausible observable data (Table 5.35.3 on the next page). All data

sets contain the three observable variables task success kpc, mission score spc and mission time tpc.

Reporting results forM4 is more complicated than with the model comparison before. The reported

WAIC and LOO-CV values of the model comparison section were calculated for different models but the

same data set. However, in this section I have only one model with different data sets. But the data sets

D7 to D14 are all set up to have 90 observations. They only vary in the number of subjects, number of

groups, number of concepts or in all of the three. D7, for example, has 30 subjects, all in a single group

of type “good”, whereas D14 has 3 different concepts, and for each concept 10 subjects in one group,

but each concept has a different group type. Both data sets consists of 90 observations in total. Because

the predictive accuracy measures WAIC and LOO-CV do not know about the internal structure of the

observable data, I can compare at least the values of WAIC and LOO-CV that were measured based on

data sets with equal number of observations. Because it is only one model that I discuss in this section,

differences in the predictive accuracy mean that the model’s performance differ with the data sets.

The model’s predictive accuracy for different data sets based on the criteria WAIC and LOO-CV are

reported in Table 5.35.3 on the following page. All columns that deal with differences between models are

obsolete: dValu, wAkaike, dSE. Data sets are sorted ascending by criterion WAIC, so the data set with the

best model’s performance is listed first. WAIC was preferred over LOO-CV because it is a fully Bayesian

criterion. Besides, LOO-CV and WAIC produce the same order with exception for data sets D10 and D13,

which would be swapped if sorted by LOO-CV. According to the results there seem to be three groups of

data sets: group one with D11,D7,D12, group two with D10,D13,D9, and group three with D14,D8.

The best results are obtained for highly structured data sets, as would be expected, like D7, which

only contains one group of type “good”, or D11, which is nearly identical because 29 subjects are in one

group of type “good” and only a single subject is in a group of type “bad”. Normally, one would expect the

model to perform better on D7 than on D11, because the model has not enough information to model the

single subject in the “bad” group. But the differences in the results of the predictive accuracy measures

are not deterministic, as each data set was generated with randomness, as was explained in section 5.2.15.2.1

The data generatorThe data generator (page 109109). To mitigate the randomness and get more robust results, one would

have to repeat the analysis with multiple data sets of the same composition and average the model’s

performance on each data set. The good performance ofM4 on D12 is surprising, given that this data set

consists of three distinct groups, each consisting of 10 subjects, but it seems that the number of subjects

suffices for the model to learn the structure that is entailed in the observable data.

The next group of data sets is characterized by two groups, one being in two of three cases dominant.

Interestingly, the model performs nearly identical on D10 and D13, although they seem to be quite different.

The first data set consists of two imbalanced groups: a “good” group of 25 subjects and only 5 subjects

12 https://docs.pymc.io/notebooks/model_comparison.htmlhttps://docs.pymc.io/notebooks/model_comparison.html. pWAIC and pLOO are both reported in pValue. var_warn and
shape_warn are both reported in Warning.

5.3. Validation 137

https://docs.pymc.io/notebooks/model_comparison.html

Table 5.3.: Overview of the data sets used in the model validation process ofM4.

Data Set N Np Nc Ng Group Types Splits

D6 150 50 1 3 [‘good’, ‘average’, ‘bad’] [10,30, 10]
D7 90 30 1 1 [‘good’] [30]
D8 90 30 1 1 [‘random’] [30]
D9 90 30 1 2 [‘good’, ‘bad’] [15,15]
D10 90 30 1 2 [‘good’, ‘bad’] [25,5]
D11 90 30 1 2 [‘good’, ‘bad’] [29,1]
D12 90 30 1 3 [‘good’, ‘average’, ‘bad’] [10,10, 10]
D13 90 30 1 3 [‘average’, ‘good’, ‘bad’] [20,5, 5]
D14 90 10 3 1 [‘bad’], [‘good’], [‘average’] [10], [10], [10]
N : total number of observations, Np: number of subjects, Nc: number of concepts, Ng number of groups per concept.

Table 5.4.: Predictive accuracy WAIC and LOO-CV values for modelM4 and eight data sets. Results come
from the PyMC3 functions pm.waic() and pm.loo(). Data sets are sorted ascending by criterion
WAIC, so data set with best model performance is listed first. For an explanation of the table
header see1212.

Data Set Criterion Value pValue SE Warning

D11 WAIC −2.32 60.43 17.77 1
LOO-CV 25.45 74.31 18.42 1

D7 WAIC 8.72 56.82 29.00 1
LOO-CV 31.62 68.27 29.43 1

D12 WAIC 16.10 81.26 20.45 1
LOO-CV 42.32 94.38 20.69 1

D10 WAIC 57.98 66.27 19.59 1
LOO-CV 87.94 81.25 20.75 1

D13 WAIC 59.81 68.43 23.21 1
LOO-CV 86.76 81.91 23.44 1

D9 WAIC 70.31 77.40 22.23 1
LOO-CV 92.41 88.44 22.32 1

D14 WAIC 150.28 27.19 26.03 1
LOO-CV 157.98 31.04 26.09 1

D8 WAIC 169.90 70.24 15.57 1
LOO-CV 188.65 79.61 17.15 1

5.3. Validation 138

in the “bad” group. The second data set consists of three imbalanced groups, an “average” group of 20

subjects, and two groups, with 5 subjects each. A higher number of subjects helps the model in two ways:

First it makes inference on global variables more stable because all subjects and concepts share these

global variables, secondly, it improves inference on conceptual latent variables because these are fixed for

a given concept.

The last group of data sets either consists of data sets with multiple concepts or less structured data.

D14 consists of three concepts, each concept with a group of different group type. Although 30 subjects

are more than enough for the model to learn the structure of the data, as was seen with D8, on which the

model had the second best performance, the combination of three different concepts the model has to

explain simultaneously is quite challenging. I already explained the nature of this challenge in the section

about model comparison and model selection. As long as the model is not designed to vary some of the

personal variables between concepts, it has not enough flexibility to model the observable variable alone

with the latent variables of the conceptual group. D8 shows another problem the model can encounter:

unstructured data. In comparison to the group types “good”, “bad”, and “average”, which are created by

the data generator of the CogIUM Package to follow a certain performance logic and produce data that

reflects these performance levels, the “random” group type has not such logic and randomly produces

valid but not plausible observable data, at least not plausible in the sense that we would expect to find

clusters of individuals that behave similarly when sharing similar characteristics.

A final word on the number of observations the model need to make accurate predictions. This

number is, in fact, quite low. For only a single subject, the model’s predictions are already in the right area

for kpc and tpc, only the distribution of the predictions for spc span the whole range of possible values for

this variable. However, already with 5 subjects, predictions improve up to the point where they are spot

on (Figure 5.185.18 on the next page). Bayesian methods are already a good way to deal with so-called cold

start problems, that is, problems where we have not enough data at the beginning to run a data-driven

application, because the uncertainty in the predictions is a inherent output of the Bayesian inference. Our

model can be run on a data set with a single observation, but predictions will be quite cruel and the prior

assumptions will dominate the inference.

5.3. Validation 139

Subject 1 to 1
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy

Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 1]
k_pc = 0, N = [1, 1]

Subject 1 to 5
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy

Posterior Predictive Distribution per Subject

observation
k_pc = 0, N = [1, 5]
k_pc = 1, N = [1, 5]

Subject 1 to 1
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 1]

Subject 1 to 5
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 5]

Subject 1 to 1
0

2

4

6

8

10

t p
c

R
t m

in

Posterior Predictive Distribution per Subject

observation
N = [1, 1]

Subject 1 to 5
0

5

10

15

20

25

t p
c

R
t m

in

Posterior Predictive Distribution per Subject

observation
N = [1, 5]

Figure 5.18.: Influence of sample size on model performance forM4. Compared are results for (top) kpc ,
(middle) spc, and (bottom) tpc. Each subplot shows the model’s performance on a data set
with (left) a single “good” subject versus a data set with (right) 5 “bad” subjects. Note the
differences in the 95 % confidence intervals represented by the whiskers.

5.3. Validation 140

5.3.4 Discussion

In the previous sections, I presented the model comparison and model selection process and showed how

to evolve from the original modelM1 over an alternative modelM2 to a hierarchical modelM3 with the

aim to enable the model to capture the main tendencies in the observed data. Model comparison was

done for five different data sets and three different metrics. After deciding to stay with modelM3 as the

best model for the data, I derived the final modelM4 by adding the ability to explain a third observed

variable to the model. I evaluated the validity of the model and the model’s predictive accuracy on nine

different data sets. The final model was able to predict all individual observations with a satisfactory

accuracy as well as to capture group differences that were present in the observed data. The model works

best for one concept and can successfully explain three continuous observed variables. More than one

concept becomes challenging for the final model and the model’s performance decreases with an increased

number of concepts. However, this behavior was expected and the logical next step in extending the

model is to give the model the ability to vary personal variables between concepts.

What are the outputs from the realized CogIUM? As I have chosen to realize the CogIUM with the help

of HBMs, the main output from Bayesian inference is a posterior distribution over all model parameters.

The gained posterior is represented by a trace object that holds the samples for each MCMC chain drawn

by an MCMC sampler. The posterior distribution describes the model’s belief about the distribution of

values for all model parameters. For example, if we want to know about the learner’s current level of

motivation or GCL, the model can provide us with a complete answer inferred from the observed data.

One form the answer can be given in are point estimates like the mean or mode value – also called the

maximum a posteriori estimation (MAP) – of the posterior distribution. A second and much better way

in which the answer can be given is in form of HDIs. An HDI contains the parameter values of highest

probability and spans the x % most probable values. With a 95 % HDI we would obtain the 95 % most

credible values. In this sense the HDI directly provides us with the model’s uncertainty about a particular

model parameter. When an adaptive system’s response is based on the output of the CogIUM, which is the

overall purpose because the inferred values should allow us to determine the best point in time when to

adapt, then it is of utmost importance to consider and have an estimate of the uncertainty of the models

output.

HDIs can be used for further analyses and to gain additional insights. If we are interested in whether

some parameter value of the learner has exceeded a threshold or not, we can use the HDI to answer

this question in combination with a region of practical equivalence (ROPE) around this threshold. For

example, we might define that a learner’s level of motivation value should not be below 0.2 and so we

define the region [0,0.2] as a ROPE. If the 95 % HDI falls entirely outside the ROPE, that is, all values in

the HDI are larger than the end point of the ROPE, then we reject the ROPE’d value, which means we do

not believe that the learner’s current level of motivation is below 0.2. More on this topic can be found in

Kruschke and Liddell (2018b2018b).

Another two pieces of information provided by the posterior distribution joint posterior distributions

and posterior predictive distributions. The joint posterior distribution is the probability distribution for

the simultaneous occurrence of at least two variables and carries more information than the marginal

posterior distributions (Wagenmakers and Farrell, 20042004). The joint posterior is in general not statistically

5.3. Validation 141

independent and cannot be gained by just the product of the two marginals. If we are interested in the

relationship between two ore more cognitive variables, we might, for example, look at the joint posterior

distribution of prior knowledge and motivation or of free working memory capacity and motivation to

see if the model provides evidence for any relationship between these variables. The posterior predictive

distribution is a distribution over simulated data. It summarizes the model’s belief about the distribution

of future data and can be used for validation purposes or to compute the probability of new data points.

After these remarks I come back to the model comparison process.

Besides the success in building and training the models, the model comparison process was not

without difficulties. Although the PyMC3 library offers methods to calculate the two metrics WAIC and

LOO-CV, both of them threw warnings for most of the models and data sets (column Warning in Tables 5.25.2

and 5.45.4 on page 131131 and on page 138138). As explained in Vehtari et al. (20162016), the computation of WAIC

should give a warning in the case any of the terms V S
s=1 log p(yi|θ s) exceeds the value 0.4. In this case the

number of effective parameters p̂waic is unreliable. Likewise, the user should be warned if the estimated

shape parameter k̂ of the generalized Pareto distribution exceeds the value 0.7 for the computation of

LOO-CV. Vehtari et al. suggest to directly sample from the posterior for the problematic i or use K-fold

cross-validation. Because PyMC3 does not inform the user about how many samples in the computation

of WAIC and LOO-CV were problematic, I tried to implement K-fold cross-validation. How to do K-fold

cross-validation is also stated in Vehtari et al. I was able to implement a version of K-fold cross-validation

that produced results comparable to PyMC3’s WAIC and LOO-CV values for models with only global

model parameters θ . However, for hierarchical models it is not clear from the equations alone how

to compute p(yi|θ k,s) because θ contains the parameter for different groups. As the observations are

modeled individually in the CogIUM models, θ contains a variable for each concept and each person for

the likelihood functions. For example in a 10-fold cross-validation with 50 subjects, I have to calculate the

probability p(yi|θ k,s) for a holdout of 5 observations and a posterior that was obtained from a training set

with 45 observations. But because the model calculates an individual θ for each of the 45 subjects, I did

not know how to aggregate θ for the holdout data. I tried taking the mean of all p(yi|θ s,k) for all groups

in θ as well as the maximum, so that the probability for the holdout is calculated as if the new data point

would belong to the best group seen in the training, but both approaches did not produce results that

were comparable to the WAIC and LOO-CV values of the PyMC3 implementation. Therefore, it is an open

question how to handle model comparison if there are warnings during the computation of the predictive

accuracy metrics.

Another metric I wanted to use are Bayes factors. However, the computation of Bayes factors require

the calculation of the model marginal likelihood. One way to obtain the marginal likelihood of a model

when using the probabilistic programming library PyMC3 is to use Sequential Monte Carlo sampler1313.

However, I was not able to set up the SMC sampler to work with my models because PyMC3 always raised

warning about incompatible shapes. Thus, another open question is how to obtain marginal likelihoods

and how to compute Bayes factors for the given models.

What can be said about the computational efficiency of the implemented models? Regarding data

set D2 with 50 subjects, one concept, three groups and two observed variables, computation time did

differ quite a lot between the four models. For only two chains, the computation of 1000 samples with

13 https://docs.pymc.io/notebooks/Bayes_factor.htmlhttps://docs.pymc.io/notebooks/Bayes_factor.html

5.3. Validation 142

https://docs.pymc.io/notebooks/Bayes_factor.html

500 samples as tuning phase, 6 cores and a target accepting rate of 0.95, modelM1 took 1 minute and

31 seconds, model M2 took 31 seconds, and model M3 took 9 minutes. Model M4 took 16 minutes

for a data set with 50 subjects, one concept, three groups and three observed variables. For practical

applications, there must be a balance between the power of the model and the computation time the

model fitting requires. Given the fact that the best model only explained three of the eight presented

observable variables, it is clear that more work has to be done to obtain an efficient model that can be

used in a real scenario where it suggests, based on its inference, the best time point of when to adapt to

the learner.

One approach to improve the model’s performance and computation time is to update priors1414. This

approach goes beyond the scope of this thesis, but PyMC3 offers a way to do this. The main idea is to use

the posterior distribution of a previous run as the prior distribution of the current run. This has many

advantages. We do not need to store the whole data set and we do not need to train the model again on

all previous data just because a new subject was added. Computation time will benefit because, instead of

non-informative priors, the MCMC sampler can start directly in regions with high probability mass, as long

as the new data is not completely different from the old one. PyMC3 offers an Interpolated class object

that takes the trace object from a sampling run as argument and returns a kernel density estimation of the

posterior that can be used within a PyMC3 model as a probability distribution like any other probability

distribution. With this extension, the model becomes independent of previous data because everything the

model has learned from the data is encoded in the posterior distribution that allows any kind of inference.

Regarding the reliability of the computed results, the quality depends on the number of samples

during the MCMC process. Bayesian inference is deterministic when done analytically, that is, when the

posterior is calculated analytically. This, however, is not possible for real-world problems and so we have

to rely on computer simulations to draw samples from the posterior distribution to gain an approximation

of this distribution. It lies in the nature of the sampling process that the quality of the approximation

is directly determined by the quality of the samples, which, in return, depends on the quality of the

MCMC algorithm. Different algorithms will produce different results for finite number of samples, and all

real-world computations are finite. The Hamiltonian Monte Carlo (HMC) algorithm used in PyMC3 is the

No-U-Turn Sampler (NUTS), first introduced by Hoffman and Gelman (20112011). NUTS proved efficient for

high dimensional, complex hierarchical models and shows adequate convergence with significantly lesser

number of iterations and no hand tuning at all (Chong and Lam, 20172017; Monnahan and Kristensen, 20182018).

Nevertheless, other MCMC algorithms might change the results presented in this thesis. In addition to

the choice of an MCMC algorithm, the number of samples is an important aspect for the quality of the

approximation. As was discussed in section 2.1.22.1.2 Markov Chain Monte CarloMarkov Chain Monte Carlo (page 3737), Kruschke (20152015)

recommends an ESS of around 10,000 to ensure a good approximation of the posterior. Such a high

number was not feasible for the simulations of this work. The simulation runs for the model comparison

based on data set D2 had ESSs between 1000 and 4000. This does not mean that the results presented

here are not accurate as a high ESS only guarantees a good quality for estimating rare events and the

limits of HDIs. However, the overall shape of the posterior as well as its mean and mode values can be

accurately computed with fewer samples and a smaller ESS. That said, it is important to check if a larger

sample size changes the findings presented here.

14 https://docs.pymc.io/notebooks/updating_priors.htmlhttps://docs.pymc.io/notebooks/updating_priors.html

5.3. Validation 143

https://docs.pymc.io/notebooks/updating_priors.html

5.4 How to Extend the Model Further

Based on the previous discussion and the results of the model validation for modelM4, I have already

mentioned the two most prominent shortcomings that have to be addressed to build a complete CogIUM:

the ability to accurately describe differences in the performance of subjects over multiple concepts and the

ability to model all observable variables. I will shortly present a few ideas regarding these shortcomings.

The latter is easier to solve but was not done in this work solely due to time restrictions. I have

already explained the basic procedure of extending the model to additional observable variables in

section 5.3.25.3.2 Model extension – a case studyModel extension – a case study (page 132132). It is necessary to pick a probability distribution

that best represents the shape of the observable variable and define its parameters in dependence of the

model’s latent variables. Regarding the set of observable variables described in Table 4.14.1 on page 7878,

the next four candidates would all be discrete variables, most of them limited to the range of positive

numbers only. In this case it can be decided to either pick a discrete probability distribution that directly

supports the target type of the observable variable, or to pick a continuous probability distribution and

use some kind of post-processing to transpose the parameter values from the continuous range to a

discrete range. But discretizing is always possible (Norets and Pelenis, 20182018). The main problem with

both discrete and continuous probability distributions in the same model is the issue of mixing other

MCMC samplers with NUTS, as NUTS works only for continuous variables. The difficulty for NUTS arises

from changes in discrete parameters that affect the continuous distribution’s geometry so that adaptation

may be inappropriate for the Hamiltonian Monte Carlo sampling. Gelman et al. (20142014) provide a section

about this problem but it is an ongoing research question. If a discrete distribution should be used,

PyMC3 provides a large set of suitable distributions1515. For the derived observable variables of Lost Earth,

distributions like the binomial distribution, the beta-binomial distribution, or the Poisson distribution are

appropriate choices because their domain is N0. The binomial distribution is especially suited for the

variable required rounds nrnd because it supports an upper limit given by the maximum number of rounds

allowed for this mission.

The second shortcoming, the problem of static personal variables over different concepts, is harder to

solve because it requires the structure of the model and the relationship between the latent variables to be

changed. Personal latent variables that are fixed for a given subject can remain unchanged, for example

a person’s capacity of working memory. However, it is reasonable and mandatory that latent variables

representing psychological states instead of traits do change with concepts, for example motivation which

changes over time. The same is true for latent variables that are directly associated with a particular

concept like prior knowledge. To make this possible, the simplest change in the model’s structure is

to change motivation and prior knowledge from group variables of one dimension to fully individual

variables of two dimensions, so both become variables with an index pc. This would mean that there are

values for each subject and for each concept, instead of only for each subject. Besides the simplicity of

this change, it has to be ensured that variables with a temporal structure are represented correctly. This

is the case for motivation which I assume will not change dramatically between consecutive missions

but only slightly. A simple change in the model from a group variable to an individual variable for each

data point does not respect this constraint and allows motivation to change arbitrarily between concepts.

15 https://docs.pymc.io/api/distributions/discrete.htmlhttps://docs.pymc.io/api/distributions/discrete.html

5.4. How to Extend the Model Further 144

https://docs.pymc.io/api/distributions/discrete.html

Therefore, dynamic hierarchical models, that is, hierarchical models that consider time variation for the

parameters through dynamic linear models, might be a more appropriate approach (Paez, 20132013). This

clearly remains an open research question.

A final word on incorporating additional cognitive variables and cognitive theories. It should not be

harder than the integration of the CLT. For example if it is the intention to extend the model to incorporate

a latent variable that can be interpreted as a learner’s flow experience, it is necessary to define which

components make up the construct of flow, how the single components can be described by a probability

distribution, and how these latent variables contribute to the explanation of the observations. Besides

the growing model complexity, I see no practical issues with extending the model to additional cognitive

theories or variables. On the contrary, it is one of the strengths of the Bayesian approach to allow such

extensions with ease.

5.4. How to Extend the Model Further 145

6 Application Example
In this chapter I give an application example of how to use the CogIUM Python package. In addition, I

will show the main output provided by the package.

I want to analyze the following scenario. I have collected data from 10 subjects playing a single

mission of the game Lost Earth. The data consists of three observed variables: task success, mission score

and mission time. The mission’s difficulty was low and all subjects showed a good performance.

First I generate the observed data for the first mission.

1 Np = 10, Nc = 1

2 obs = [’k_pc’, ’s_pc’, ’t_pc’], groups = [[’good’]], splits=[[10]]

3

4 data = generator.generate_observations(nr_subjects=Np, nr_concepts=Nc, variables=obs, groups=groups,

splits=splits)

The generated data is returned as a NumPy array with shape (10, 1,3) for 10 subjects, one concept

and three observations. Because the data is generated for a good performing group, task success is always

1, mission score is always between 0.7 and 1.0 and the mission time is between 5 and 10 plus a random

number.

1 array([[[1. , 1. , 7.24401135]],

2 [[1. , 0.7 , 7.36746463]],

3 [[1. , 1. , 6.08471188]],

4 [[1. , 1. , 8.32547848]],

5 [[1. , 1. , 9.74794714]],

6 [[1. , 0.7 , 12.19119183]],

7 [[1. , 0.9 , 9.84261509]],

8 [[1. , 0.8 , 11.54478263]],

9 [[1. , 0.9 , 10.03550018]],

10 [[1. , 0.9 , 8.34281885]]])

The next steps are building the model and fitting the model to the observed data. I choose the final

model M4 as model for this example and draw 1000 samples from the posterior distribution after a

tuning phase of 500 samples.

1 model_filename = ’data(10-1-3)_groups((good))_split((10))_desc(demoApp)’

2 model = CogiumImprovedHierarchical3Obs.load(model_filename)

3 trace = model.sample(nr_samples=1000, nr_tune=500, nr_chains=2, nr_cores=6, target_accept=0.95)

4 model.save(model_filename)

146

Unfortunately there are warnings during the MCMC sampling process. I am informed that the

gelman-rubin statistic is larger than 1.05 for some parameters, which means that the MCMC chains have

not converged yet.

Output of the first call of the pm.sample() method. The warnings indicate divergence of the chains.

I further analyze the quality of the MCMC chains with the help of the plot_trace_summary() function

to get the effective sample size (ESS), the potential scale reduction R̂ and the MCMC error. The ESS is

quite small and a few R̂ values are indeed in the region of 1.05.

0 500 1000 1500 2000 2500
neff

0

10

20

30

40

Fr
eq

ue
nc

y

1.00 1.01 1.02 1.03 1.04 1.05 1.06
R

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
MCMC Error

0

10

20

30

40

50

60 Demo Model 1

Summary Statistics for MCMC Traces

Summary statistics for the MCMC chains of the first run.

Based on this information I decide to rerun the sampling with a larger tuning phase of 1000 samples.

1 model_filename = ’data(10-1-3)_groups((good))_split((10))_desc(demoApp)’

2 model = CogiumImprovedHierarchical3Obs.load(model_filename)

3

4 trace = model.sample(nr_samples=1000, nr_tune=1000, nr_chains=2, nr_cores=6, target_accept=0.95)

5 model.save(model_filename)

This time, there are still warnings but the warning with regard to the gelman-rubin statistic is gone.

Interestingly, the run time was even shorter than for the first run with less samples.

Output of the second call of the pm.sample() method. This time warnings do not indicate a divergence of
the chains, only of single samples.

147

The output of the plot_trace_summary() function confirms that the quality of the MCMC chains has

improved. The ESS is higher and there are less MCMC errors.

Summary statistics for the MCMC chains of the second run.

Now I begin to analyze the posterior distributions, the main output of the Bayesian inference. I first

look at the posterior for motivation and prior knowledge for two of the ten subjects. Because all subjects

have equal performance I do not expect to find significant differences in their posterior distributions. I

can see that the posterior distribution for prior knowledge is not very different from the prior distribution

which indicates that the model did not update that variable. However, the posterior distribution for

motivation differs from the prior distribution so the model did update its prior assumptions based on the

observed data. But, as expected, motivation does not differ between subjects. The 95 % HDI tells me that

95 % of the most credible values are between 0.24 and 1.0 for motivation.

0.0 0.2 0.4 0.6 0.8 1.0
Motivation: mp [0, 1]

0.74 1.0
95% HPD

mean=0.89

Subject 3

Prior Density

0.0 0.2 0.4 0.6 0.8 1.0
Motivation: mp [0, 1]

0.64 1.0
95% HPD

mean=0.82

Subject 7
Posterior Distribution

0.0 0.2 0.4 0.6 0.8 1.0
Prior Knowledge: p [0, 1]

0.13 0.91
95% HPD

mean=0.55

Subject 3

Prior Density

0.0 0.2 0.4 0.6 0.8 1.0
Prior Knowledge: p [0, 1]

0.08 0.88
95% HPD

mean=0.49

Subject 7
Posterior Distribution

Posterior distribution for motivation and prior knowledge.

148

Next I have a look at the posterior distributions for the cognitive load variables ICL and ECL. I can see

that the model estimates ICL to be between 1 and 6.19 with a mean value of 3.01 and ECL to be between

0.57 and 2.08. So the model estimates ICL to be higher than ECL. However, the value for ICL is relative

low compared to a person’s working memory capacity of 7 so this seems to confirm that the mission was

easy.

2 4 6 8 10
Intrinsic Cognitive Load: iclc R 1

1.0 6.19
95% HPD

mean=3.01

Posterior Distribution

0.0 0.5 1.0 1.5 2.0 2.5
Extraneous Cognitive Load: eclc R 0

0.57 2.08
95% HPD

mean=1.42

Posterior Distribution

Posterior distribution for ICL and ECL.

This is further confirmed by checking the posterior distributions of GCL and free working memory

capacity. GCL is estimated to be between 0.53 and 0.86 which is rather high and means that the person

dedicates much of their resources to learning. The free working memory capacity is also high, which

means that the working memory resources of that person are not depleted.

149

0.0 0.2 0.4 0.6 0.8 1.0
Germane Cognitive Load: gclpc [0, 1]

0.53 0.86
95% HPD

mean=0.69

Subject 3

0.0 0.2 0.4 0.6 0.8 1.0
Germane Cognitive Load: gclpc [0, 1]

0.42 0.81
95% HPD

mean=0.62

Subject 7Posterior Distribution

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Free WM Capacity: deltapc R 1

0.38 0.8
95% HPD

mean=0.61

Subject 3

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Free WM Capacity: deltapc R 1

0.29 0.79
95% HPD

mean=0.58

Subject 7Posterior Distribution

Posterior distribution for GCL and free working memory capacity.

A look at the output of the show_group_differences() function can confirm that the model has

detected individual differences. However, the model has primarily changed motivation between different

subjects, which also influences GCL because it is a deterministic variable dependent on motivation. Prior

knowledge is more or less constant over all subjects and as a direct consequence so is free working

memory capacity.

Subject 1 to 10
0.0

0.2

0.4

0.6

0.8

1.0

m
p

[0
,1

]

Posterior Distribution per Subject

N = [1, 10]

Subject 1 to 10
0.0

0.2

0.4

0.6

0.8

1.0

p
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]

Subject 1 to 10
0.0

0.2

0.4

0.6

0.8

1.0

gc
l p

c
[0

,1
]

Posterior Distribution per Subject

N = [1, 10]

Subject 1 to 10
4

3

2

1

0

1

pc
R

1

Posterior Distribution per Subject

N = [1, 10]

Individual differences in the posterior distribution for motivation, prior knowledge, GCL and free working
memory capacity.

150

The final step of the analysis is to look at the posterior predictive distribution and to check if the

model was able to accurately capture the structure of the observed data. The posterior predictive check

tells me that the model successfully captured the structure of the data. It produces the right predictions

for all subjects and all observable variables. However, it can be seen that the predictions are more accurate

for mission score than for mission time, which is confirmed by comparing the model’s average prediction

distribution with the distribution of the observed data.

Subject 1 to 10
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
as

s F
re

qu
en

cy

Posterior Predictive Distribution per Subject

observation
k_pc = 1, N = [1, 10]
k_pc = 0, N = [1, 10]

0.0 0.2 0.4 0.6 0.8 1.0
Task Success: kpc

0

2

4

6

8

10

12

14

16

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

Subject 1 to 10
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 10]

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0

1

2

3

4

5

6

7

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

Subject 1 to 10
0

2

4

6

8

10

12

t p
c

R
t m

in

Posterior Predictive Distribution per Subject

observation
N = [1, 10]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Mission Time: tpc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Posterior Predictive Distribution

posterior predictive
observation
posterior predictive mean

Posterior predictive check for task success, mission score, and mission time.

151

7 Conclusion and Recommendations
Adaptive educational serious games strive for the right balance between enjoyment and challenge: to

motivate the learner and offer incentives and a playful experience while, at the same time, confronting the

player with problems that facilitate their domain mastery and go beyond the current learner’s skill level.

To achieve this balance, a dynamic assessments of the learner’s current cognitive state is mandatory. Only

when adaptive measures are applied at the right time to meet the learner’s current needs, it is possible for

the learner to experience a state of flow and to remain in this state. The question of when to adapt is still

an open research question for adaptive educational games.

The central component of an adaptive system for educational serious games is the student model

that represents the learner’s current cognitive state. If the student model is accurate and appropriate for a

given learner and learning task, the model’s estimate of the learner’s current cognitive state can be used

to derive and suggest adaptive measures to help navigating the player through the game on a smooth and

engaging path. The realization of such a cognitive architectureas the main topic of this thesis.

The field of computational cognitive science offers a rich toolbox for approaches that can be used

to build and train student models. Two approaches were chosen and tested for their applicability and

practicality. Soar, a hybrid cognitive architecture, was used as the first approach to realize cognitive user

models. Soar conducts a search through problem space to find a path from an initial state to a defined

goal state by applying suitable operators to the current state. The second approach made use of Bayesian

methods, especially hierarchical Bayesian models (HBMs). In Bayesian data analyses descriptive models

are used that captures the essential structure of the observations with the help of probability distributions.

Bayesian inference then allows to infer the posterior distribution of the model parameters based on prior

knowledge about the model parameters and the probability of the actual observable data. To work with

Soar, it is required to model the game in the Soar language, to define an initial state with all relevant

attributes, and to specify the operators that represent the possible interactions. To work with Bayesian

methods, it is required to define the relevant observable data, the model’s latent variables that are the

targets of the Bayesian inference, and the relationship between the latent and the observable variables,

that is, the model’s structure.

The digital educational serious game used in this work was Lost Earth, developed at the IAS of the

Fraunhofer IOSB. The game is currently ported from the Havoc game engine to the Unity game engine

and is only available as an early prototype with a subset of the original game’s content. The first step

of this thesis was an in-depth analysis of the interaction patterns found in the game. The results of this

analysis were an activity diagram for the missions in Lost Earth and a set of observable variables that can

be captured from the users’ interactions with the game by Experience API statements. Three categories

of observable variables were identified: general performance measures, domain-specific measures, and

game-specific measures. For each observable variable its domain and numerical type was specified.

At this point of the thesis, I decided to no longer continue with the cognitive architecture approach.

It seemed not possible to realize a cognitive user model with Soar 9 given the thesis’ time constraints

and the fact that Soar is primarily a problem solver and does not provide a learner’s cognitive state as

152

output. However, possible first starting points were mentioned and considerations were made as to how

Soar could be used as a basis for adaptive systems.

Instead, HBMs provided a direct way to implement a cognitive user model that is based on the

interactions between the learner and a serious game. The second approach required the development of

a descriptive model. No source for a comparable procedure could be found in the literature that made

use of a Bayesian model for digital educational serious games for inferring the learner’s current cognitive

state based on learner interactions. Therefore, the descriptive model had to be build from the ground.

The concept of cognitive load and its constituting components were ideal candidates for the model’s

central latent variables. The relationship between the characteristics of the learning material and the

characteristics of the learner, as explained by the Cognitive Load Theory (CLT), was the main source of

inspiration for the model’s structure. The main contribution of this thesis is the specification of four HBMs

that explain the occurrence of observed data with the help of latent variables that are partly interpretable

as cognitive variables. The models accept observations from multiple users and multiple missions.

The practical use of HBMs was shown in concrete examples by means of a model comparison and

model selection process and the extension of existing models. It was demonstrated how to estimate a

model’s predictive accuracy based on the model’s simulations given as the posterior predictive distribution.

The results obtained were used to improve the original model until its predictive accuracy was consistent

with the observed data. A model comparison ensured that the developed model was indeed to be preferred

over the predecessor models. Likewise, it was shown how to extend the model with the ability to explain

additional observable variables. Particular attention was paid to explaining the benefits of hierarchical

modeling. The final model allows for inferring the learner’s current cognitive state with respect to their

level of motivation, prior knowledge of a concept, and invested working memory resources for learning.

In addition, the model makes statements about the cognitive demands imposed by the learning material

composed of the natural intrinsic complexity of the material and the extraneous additional cognitive load.

Finally, free working memory capacity as the difference between the available working memory resources

and the cognitive load imposed by the learning task can be interpreted as a measure of difficulty.

However, it has to be noted that the presented results are based on simulated data and not on

empirical data. Moreover, the model’s latent variables are based on cognitive theories, but the verification

that the variables have a real equivalence has yet to be done. It is not clear whether differences in the

model’s personal variables correctly describe real world differences between subjects. All of this must be

examined by a detailed model evaluation in the form of a user study still to be carried out.

7.1 Assessment of Requirements

Section 4.34.3 Realizing Cognitive User ModelsRealizing Cognitive User Models (page 8080) listed 12 requirements that should be fulfilled by

an ideal approach for realizing cognitive intelligent user models. This section provides a short comparison

of the two approaches based on the degree to which they fulfilled the requirements. Because the use of

Soar was discontinued in favor of HBMs, the evaluation is based on my knowledge about Soar and the

experiences made during the conceptual phase of this thesis.

In my opinion, PyMC3 fulfills all of the 12 requirements, whereas Soar 9 only meets 7 out of 12

requirements (Table 7.17.1 on the next page).

7.1. Assessment of Requirements 153

Table 7.1.: Compliance with the requirements for the two frameworks Soar and PyMC3. A check mark
() marks the fulfillment of a requirement. If both approaches meet a requirement it is not
implied they do so equally well.

Approach

Requirement Soar 9 PyMC3

Actively developed
Appropriateness
Availability
Extensibility
Extensive support
Generality
Intelligence
Interoperability
Lightweight
Low dependencies
Proved and tested
Simplicity
∑

7 12

Regarding availability, both frameworks are publicly available and have hosted their implementation

as public projects on GitHub11. Both are available for all major platforms. Soar can be downloaded as a

stand-alone multi-platform version. PyMC3 is a Python library and can be easily installed with common

package managers for Python like pip or conda.

Regarding being actively developed, both are still supported and actively developed, but PyMC3 has

a much faster development cycle and therefore more recent releases. The latest stable version of Soar is

Soar 9.6.0 from June 2017 and the last activity on GitHub dates back to December 2018. In comparison,

the latest stable version of PyMC3 is version 3.6 and was released in December 2018, while the library is

actively developed on GitHub on a daily basis.

Regarding being proved and tested, both frameworks have a substantial amount of literature sup-

porting their application. Publications related to Soar are directly available via the official website22

and Kotseruba and Tsotsos (20182018) give an overview of the many applications of Soar. The case for

PyMC3 is different because PyMC3 does not contribute new algorithms or architectures but implements

algorithms for performing Bayesian inference accessible for a broad audience. PyMC3 was introduced

to the scientific community by Salvatier et al. (20162016) and offers a substantial library of examples with

solutions to standard problems of the field33.

Regarding extensive support, PyMC3 offers much more resources than Soar does. PyMC3 provides

the user with a quick start, multiple in-depth guides, tutorials in form of Jupyter Notebooks that provide

executable code, many examples how to use PyMC3 for specific use cases, and a documented API. Soar,

instead, offers little online resources but mainly static documents provided as PDF files. The main

documents provided by Soar are the Soar User’s Manual from November 2017 with a total page count

1 https://github.com/SoarGroup/Soarhttps://github.com/SoarGroup/Soar and https://github.com/pymc-devs/pymc3https://github.com/pymc-devs/pymc3
2 https://soar.eecs.umich.edu/Soar-RelatedResearchhttps://soar.eecs.umich.edu/Soar-RelatedResearch
3 https://docs.pymc.io/nb_examples/index.htmlhttps://docs.pymc.io/nb_examples/index.html

7.1. Assessment of Requirements 154

https://github.com/SoarGroup/Soar
https://github.com/pymc-devs/pymc3
https://soar.eecs.umich.edu/Soar-RelatedResearch
https://docs.pymc.io/nb_examples/index.html

of 313 and a tutorial divided into eight parts. Additional resources including developed agents, agent

development tools, and domains are provided via the website. In my opinion, beginning with Soar takes

a lot of time and requires at least a little understanding of the architecture and the Soar syntax to be

productive, whereas PyMC3 offers a much smoother and more motivating beginning that leads to fast

first results.

Regarding generality, both frameworks can rightfully claim to be general frameworks. Soar is per

design a framework for general artificial intelligence and can be applied to any domain and any problem

as long as the problem can be described with the tools provided by Soar. Likewise, PyMC3 is a framework

for probabilistic programming that offers MCMC algorithms to solve Bayesian inference for a wide range

of possible models. PyMC3 does not limit the user in the implementation of models as long as the model

can be expressed with the provided probability distributions.

Regarding extensibility, PyMC3 offers the usage of custom distributions whenever the built-in

probability distributions do not suffice. To my knowledge, Soar does not provide any possibilities to

extend the framework.

Regarding low dependencies, both frameworks do not require third party libraries. Soar does not

even require Java if used as a command line tool. PyMC3 only requires other Python packages that are

automatically installed during the installation routine.

Regarding interoperability, PyMC3 has the clear advantage of working on and producing exclusively

numerical data. xAPI statements can be easily processed once a parser has been written to extract the

numerical values of the observed variables from the xAPI statements, which is straight forward thanks

to the specification of the API. The output of PyMC3 is numerical data that can be easily accessed by an

adaptive system. Working with Soar requires to extract the attributes for the initial state from the xAPI

statements, which might be equally simple once a parser has been written. However, the output is much

harder to process because Soar does not provide a standard output. The output has to be generated by

the user via the print or output command or other diagnostic commands provided by Soar. This requires

much more effort in comparison to the output provided by PyMC3 and is not easily transferable to other

applications.

Regarding being lightweight, both frameworks are self-contained and relatively small, only a few tens

of megabytes. Soar 9 has the advantage of a command line interface, while PyMC3 needs an up-to-date

Python environment. Thus, Soar 9 can be seen as more lightweight than PyMC3.

Regarding appropriateness, this requirement was the main reason to discontinue the use of Soar as I

could not see an easy way to implement a CogIUM with Soar. I have presented a few starting points, but

in the end Soar 9 does not provide output that represents cognitive variables. In contrast to this, HBMs

implemented with PyMC3 can be built to directly model desired cognitive variables and explain observed

data and the output is easily interpretable due to the nature of probability distributions.

Regarding simplicity, PyMC3 requires a lot less understanding from the user than Soar 9 does. It is

true that one has to know how to build (hierarchical) Bayesian models to work with PyMC3, but simple

applications consist of only a few lines of code and the user needs no knowledge at all about MCMC

algorithms to create output with PyMC3, although this knowledge becomes important when the MCMC

algorithm get stuck. Working with Soar requires to learn the syntax for Soar programs and defining all

operators before the agent is able to show meaningful behavior. I do not consider Soar to be simple and

7.1. Assessment of Requirements 155

even simple problems like the Water Jug require a considerable amount of effort from the user. This is the

price Soar has to pay for its generality.

Regarding intelligence, the frameworks cannot be compared. Soar is a framework that is built to

allow general artificial intelligence and consequently offers mechanisms to elicit intelligent behavior. Soar

supports four major learning mechanisms: chunking, semantic, episodic, and reinforcement learning

(Lehman et al., 20062006). These mechanisms can be used to generate all of the different representations of

knowledge in Soar. PyMC3 is not a framework for realizing agents and thus has no learning mechanisms.

However, a lot of magic happens in the background of PyMC3 to choose the best MCMC algorithm and to

find the best starting point for the MCMC chains. And it offers the possibility to use the previous posterior

distribution as the prior distribution of the current run, so that insights from previous inferences carry

over to new data. However, I would in any case award Soar the greater ability to intelligence.

In summary, both frameworks analyzed in this thesis show a great potential for realizing

cognitive intelligent user models, but PyMC3 has a clear lead with regard to practicality and the stated

research goals.

Chrysafiadi and Virvou (20132013, p. 4716) state that “in order to construct a student model, it has to be

considered what information and data about a student should be gathered, how it will update in order

to keep it up-to-date, and how it will be used in order to provide adaptation.” Hierarchical Bayesian

models provided a practical and useful answer to all three points and are a real promising approach for

the realization of cognitive intelligent user models.

7.2 Open Questions and Future Work

At the end of this thesis I would like to discuss the starting points for future work that have emerged in

the course of this work.

The most urgent issue is the incomplete model evaluation. While the predictive accuracy of the model

has been extensively validated, there was no validation of latent model variables with respect to their

correspondence to the cognitive state of the learner. The only way to evaluate the model’s correspondence

to the learner’s cognitive state is by means of a user study. This was originally intended to be part of

the thesis, but could not be put into practice because dealing with Soar took much more time than

anticipated. The idea was already present in the first draft of the CogIUM (Figure 4.144.14 on page 9191).

The idea is that total cognitive load clpc is the cause for an observable variable qpc which represents

scores for total cognitive load obtained by subjective questionnaires as was discussed in section 3.33.3

Measuring Cognitive LoadMeasuring Cognitive Load (page 6666). This can be extended to all components of the CLT, because there

are questionnaires that can reliably measure ICL, ECL, and GCL (Klepsch et al., 20172017; Leppink et al., 20132013).

In this case, a user study would be conducted with N participants playing Lost Earth, probably different

missions with varying difficulty, and the questionnaires administered at the end of each mission. The

acquired observational data would contain the observed variables from Lost Earth as well as the subjective

measures of cognitive load. The model would then be fitted to the data and a posterior predictive check

would show if the model was able to learn the structure in the observed data and whether the assumed

values for the latent variables that represent the components of the CLT are comparable to the learner’s

subjective impression of the experienced cognitive load. However, this procedure requires that these

7.2. Open Questions and Future Work 156

additional observations are always present, which is normally not the case as measuring cognitive load is

not part of the game play of Lost Earth.

An alternative is a user study conducted in the same manner as described above, but in which the

subjective measures of cognitive load are compared with what the model assumes about the learner’s

current cognitive load. This means that the subjective measures are not presented to the model but used

as an external source for validation. For example if a learner plays two different missions and rates

the experienced cognitive load significantly different, the model should show the same tendency in the

personal variables for this subject when fitted to the subject’s observed data, but without the subjective

measures. Likewise, if several subjects play the same two different missions and discordantly rate one

mission as more difficult than the other, the model should show the same tendency in the conceptual

variables for the two concepts when fitted to the data. It is not important that there is a one-to-one

correspondence between the values of the model and the subjective measures of the questionnaire as the

model’s latent variables use a different scale and are designed to work with the rest of the model variables

and not to represent the scores of a questionnaire. However, the tendency must be the same if the model

is expected to accurately represent the learner’s current cognitive load. Chang et al. (20172017) conducted

a study to examine the differences on flow experiences and different kinds of cognitive load between

participants engaged in game-based learning and non-game-based learning. They used a modified

version of a scale for measuring flow experience and an own cognitive load scale based on existing

scales in literature. Participants first took a prior knowledge test on the domain of the learning objective.

Afterwards, they completed a guidance orientation phase in which the learning objective was explained.

The instructional experiment with the questionnaires administered at the end followed. Study design and

the provided questionnaires might be useful starting points for future work that intends to conduct the

above outlined user studies. Irrespective of the method chosen, however, the evaluation of the model for

real user data must be carried out at a later stage.

A second unanswered research question is how cognitive architectures can be used to real-

ize cognitive intelligent user models. I have presented first starting points for Soar in section 4.3.14.3.1

With cognitive architecturesWith cognitive architectures (page 8181), but future work should not be limited in the choice of a suitable

cognitive architecture. In fact, there are so many different cognitive architectures that it is very well

possible to find another already available architecture that is better suited for inferring the learner’s

current cognitive state. The overview of the last 40 years of research on cognitive architectures by

Kotseruba and Tsotsos (20182018) can be a valuable starting point for finding better suited architectures.

Such a candidate might be the cognitive architecture CLARION (Sun et al., 20052005). CLARION is an

integrative architecture with a number of distinct subsystems and a unique dual representational structure

in each subsystem—implicit versus explicit representations. The most interesting part about CLARION

are the motivational subsystem and the meta-cognitive subsystem. The motivational subsystem provides

underlying motivation for perception, action, and cognition, in terms of providing impetus and feedback.

The meta-cognitive subsystem monitors, controls, and regulates cognitive processes with the aim of

improving cognitive performance. Sun (20072007, p. 16) states that “CLARION is grounded in psychological

research, is reasonably compact, and matches a range of empirical data.” Since Sun is the architecture’s

inventor, the praise should be taken with caution. Nevertheless, the specifications of CLARION give the

impression that this architecture is much more suited for realizing CogIUMs than Soar was. Hélie and Sun

7.2. Open Questions and Future Work 157

(20142014, p. 54) confirm that CLARION “can learn without much prior knowledge, such as initial productions

necessary in ACT-R or Soar.” However, they also note that “CLARION has not yet been applied to some of

the most complex tasks where ACT-R and Soar have been successful, so more research is required to test

whether efficient strategies would automatically emerge from Clarion, and how they would math human

results.”

As a final thought, it should be mentioned that there is no reason to limit the choice of appropriate

methods to one tool only. Pavlik Jr. et al. (20132013) mention in their review that many mature ITS use a

blend of student models. They differentiate between three levels at which pedagogy occurs: the inner

loop, the outer loop, and the curriculum loop. They give an example of a model that uses a version of

BKT student model for the outer loop to solve problems, but within problems the student model is more

like a constraint-based model with inner loop pedagogical responses to student actions disconnected

from the outer loop BKT student model. In another example a constraint-based student model is used

for the the inner loop to tutor problem solving, a knowledge space domain model for the outer loop to

select problems, and a classification of students into basic skills unit for the curriculum branching loop.

Thomson and Lebiere (20132013) demonstrate how a functional cognitive architecture can constrain Bayesian

inference by tying neurally-consistent mechanisms into Bayesian-compatible sub-symbolic activation.

Llargues Asensio et al. (20142014) combine combine the two cognitive architectures CERA-CRANIUM and

Soar to CCBotSOAR, an advanced controller for believable agents. Soar is used in CERA-CRANIUM to

give the system learning and memory based decision-making mechanisms based on the bot’s experiences.

So there are many possibilities to combine the strengths of the two approaches presented in this thesis

and mitigate some of their weaknesses.

7.2. Open Questions and Future Work 158

Bibliography
Activity Streams 2.0 (2017). W3C Recommendation 23 May 2017. W3C.

Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford University Press.

Baker, R. S. (2016). Stupid Tutoring Systems, Intelligent Humans. In: International Journal of Artificial
Intelligence in Education 26 (2), pp. 600–614. DOI: 10.1007/s40593-016-0105-010.1007/s40593-016-0105-0.

Bakhouyi, Abdellah, Dehbi, Rachid, Lti, Mohamed Talea, and Hajoui, Omar (2017). “Evolution of
standardization and interoperability on E-learning systems: An overview”. In: 2017 16th Interna-
tional Conference on Information Technology Based Higher Education and Training (ITHET). IEEE. DOI:
10.1109/ITHET.2017.806778910.1109/ITHET.2017.8067789.

Bell, B. (2015). “One-Size-Fits-Some: ITS Genres and What They (Should) Tell Us About Authoring Tools.
Authoring Tools and Expert Modeling Techniques”. In: Design Recommendations for Intelligent Tutoring
Systems. Authoring Tools and Expert Modeling Techniques. Ed. by Sottilare, Robert A., Graesser, Arthur C.,
Hu, Xiangen, and Brawner, Keith. Vol. 3. U.S. Army Research Laboratory. Chap. 3.

Berdun, Franco D. and Armentano, Marcelo G. (2018). Modeling Users Collaborative Behavior with a
Serious Game. In: IEEE Transactions on Games, pp. 1–1. DOI: 10.1109/TG.2018.279441910.1109/TG.2018.2794419.

Betancourt, M. (2017). A Conceptual Introduction to Hamiltonian Monte Carlo. In: arXiv e-prints,
arXiv:1701.02434.

Blanco, A. del, Serrano, A., Freire, M., Martinez-Ortiz, I., and Fernandez-Manjon, B. (2013). “E-Learning
standards and learning analytics. Can data collection be improved by using standard data models?” In:
2013 IEEE Global Engineering Education Conference (EDUCON). IEEE. DOI: 10.1109/EduCon.2013.653026810.1109/EduCon.2013.6530268.

Boyle, E. A. et al. (2016). An update to the systematic literature review of empirical evidence of the
impacts and outcomes of computer games and serious games. In: Computers & Education 94, pp. 178–
192. DOI: 10.1016/J.COMPEDU.2015.11.00310.1016/J.COMPEDU.2015.11.003.

Brooks, S. P. and Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations.
In: JCGS 7 (4), pp. 434–455. DOI: 10.1080/10618600.1998.1047478710.1080/10618600.1998.10474787.

Brünken, R., Plass, J. L., and Leutner, D. (2003). Direct Measurement of Cognitive Load in Multimedia
Learning. In: Educational Psychologist 38 (1), pp. 53–61. DOI: 10.1207/S15326985EP3801_710.1207/S15326985EP3801_7.

Chang, C.-C., Liang, C., Chou, P.-N., and Lin, G.-Y. (2017). Is game-based learning better in flow experience
and various types of cognitive load than non-game-based learning? Perspective from multimedia and
media richness. In: Computers in Human Behavior 71, pp. 218–227. DOI: 10.1016/j.chb.2017.01.03110.1016/j.chb.2017.01.031.

Charles, R. L. and Nixon, J. (2019). Measuring mental workload using physiological measures: A systematic
review. In: Applied Ergonomics 74 (September 2016), pp. 221–232. DOI: 10.1016/j.apergo.2018.08.02810.1016/j.apergo.2018.08.028.

Chater, N., Tenenbaum, J. B., and Yuille, A. (2006). Probabilistic models of cognition: Conceptual
foundations. In: Trends in Cognitive Sciences 10 (7), pp. 287–291. DOI: 10.1016/j.tics.2006.05.00710.1016/j.tics.2006.05.007.

Chong, A. and Lam, K. P. (2017). “A Comparison of MCMC Algorithms for theBayesian Calibration
of Building Energy Models”. In: Proceedings of the 15th IBPSA Conference, pp. 1319–1328. DOI:
10.26868/25222708.2017.33610.26868/25222708.2017.336.

159

https://doi.org/10.1007/s40593-016-0105-0
https://doi.org/10.1109/ITHET.2017.8067789
https://doi.org/10.1109/TG.2018.2794419
https://doi.org/10.1109/EduCon.2013.6530268
https://doi.org/10.1016/J.COMPEDU.2015.11.003
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1207/S15326985EP3801_7
https://doi.org/10.1016/j.chb.2017.01.031
https://doi.org/10.1016/j.apergo.2018.08.028
https://doi.org/10.1016/j.tics.2006.05.007
https://doi.org/10.26868/25222708.2017.336

Chown, E. (2004). Cognitive Modeling. Ed. by Tucker, A. DOI: 10.1016/S0898-1221(03)90060-510.1016/S0898-1221(03)90060-5.

Chrysafiadi, K. and Virvou, M. (2013). Student modeling approaches: A literature review for the last
decade. In: Expert Syst. Appl. 40 (11), pp. 4715–4729. DOI: 10.1016/j.eswa.2013.02.00710.1016/j.eswa.2013.02.007.

Conati, C. and Maclaren, H. (2009). Empirically building and evaluating a probabilistic model of user affect.
In: User Modeling and User-Adapted Interaction 19 (3), pp. 267–303. DOI: 10.1007/s11257-009-9062-810.1007/s11257-009-9062-8.

De Schutter, B. (2011). Never Too Old to Play: The Appeal of Digital Games to an Older Audience. In:
Games and Culture 6 (2), pp. 155–170. DOI: 10.1177/155541201036497810.1177/1555412010364978.

DeLeeuw, K. E. and Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for
separable measures of intrinsic, extraneous, and germane load. In: Journal of Educational Psychology
100 (1), pp. 223–234. DOI: 10.1037/0022-0663.100.1.22310.1037/0022-0663.100.1.223.

Deonovic, Benjamin E. and Smith, Brian J. (2017). Convergence diagnostics for MCMC draws of a
categorical variable. In: arXiv e-prints, arXiv:1706.04919.

Dermeval, D., Paiva, R., Bittencourt, I. I., Vassileva, J., and Borges, D. (2017). Authoring Tools for
Designing Intelligent Tutoring Systems: a Systematic Review of the Literature. In: International Journal
of Artificial Intelligence in Education 28 (3), pp. 336–384. DOI: 10.1007/s40593-017-0157-910.1007/s40593-017-0157-9.

Farrell, S. and Lewandowsky, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge
University Press. DOI: 10.1017/cbo978131627250310.1017/cbo9781316272503.

Feldman, J., Monteserin, A., and Amandi, A. (2014). Detecting students perception style by using games.
In: Computers & Education 71, pp. 14–22. DOI: 10.1016/j.compedu.2013.09.00710.1016/j.compedu.2013.09.007.

Friedenberg, J. and Silverman, G. (2006). Cognitive Science: An Introduction To The Study Of Mind (Pb).
Sage Publications Inc.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article
by Browne and Draper). In: Bayesian Analysis 1 (3), pp. 515–534. DOI: 10.1214/06-BA117A10.1214/06-BA117A.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data
Analysis. third. Chapman and Hall/CRC.

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., and Tenenbaum, J. B. (2010). Probabilistic models
of cognition: exploring representations and inductive biases. In: Trends in Cognitive Sciences 14 (8),
pp. 357–364. DOI: 10.1016/j.tics.2010.05.00410.1016/j.tics.2010.05.004.

Gudivada, V. N. (2016). “Cognitive Computing : Concepts, Architectures, Systems, and Applications”. In:
Cognitive Computing: Theory and Applications. Ed. by Gudivada, V., Raghavan, V., Govindaraju, V., and
Rao, C. R. Vol. 35, pp. 3–38.

Hart, S. G. and Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical
and Theoretical Research. Elsevier, pp. 139–183. DOI: 10.1016/S0166-4115(08)62386-910.1016/S0166-4115(08)62386-9.

Hélie, S. and Sun, R. (2014). Autonomous learning in psychologically-oriented cognitive architectures: A
survey. In: New Ideas in Psychology 34, pp. 37–55. DOI: 10.1016/j.newideapsych.2014.03.00210.1016/j.newideapsych.2014.03.002.

Hoffman, M. D. and Gelman, A. (2011). The No-U-Turn Sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo. In:

Kickmeier-Rust, M. D. and Albert, D. (2012). Educationally adaptive: Balancing serious games. In:
International Journal of Computer Science in Sport 11 (1), pp. 15–28.

Bibliography 160

https://doi.org/10.1016/S0898-1221(03)90060-5
https://doi.org/10.1016/j.eswa.2013.02.007
https://doi.org/10.1007/s11257-009-9062-8
https://doi.org/10.1177/1555412010364978
https://doi.org/10.1037/0022-0663.100.1.223
https://doi.org/10.1007/s40593-017-0157-9
https://doi.org/10.1017/cbo9781316272503
https://doi.org/10.1016/j.compedu.2013.09.007
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1016/j.tics.2010.05.004
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/j.newideapsych.2014.03.002

Kickmeier-Rust, M. D., Mattheiss, E., Steiner, C., and Albert, D. (2011). A Psycho-Pedagogical Framework
for Multi-Adaptive Educational Games. In: International Journal of Game-Based Learning 1 (1), pp. 45–
58. DOI: 10.4018/ijgbl.201101010410.4018/ijgbl.2011010104.

Klepsch, M., Schmitz, F., and Seufert, T. (2017). Development and Validation of Two Instruments Measuring
Intrinsic, Extraneous, and Germane Cognitive Load. In: Front. Psychol. 8. DOI: 10.3389/fpsyg.2017.0199710.3389/fpsyg.2017.01997.

Kotseruba, I. and Tsotsos, J. K. (2018). 40 years of cognitive architectures: core cognitive abilities and
practical applications. In: Artificial Intelligence Review. DOI: 10.1007/s10462-018-9646-y10.1007/s10462-018-9646-y.

Kruschke, J. K. (2010a). Bayesian data analysis. In: Wiley Interdiscip. Rev. Cognit. Sci. 1 (5), pp. 658–676.
DOI: 10.1002/wcs.7210.1002/wcs.72.

Kruschke, J. K. (2010b). What to believe: Bayesian methods for data analysis. In: Trends in Cognitive
Sciences 14 (7), pp. 293–300. DOI: 10.1016/j.tics.2010.05.00110.1016/j.tics.2010.05.001.

Kruschke, J. K. (2015). Doing Bayesian Data Analysis. Elsevier LTD, Oxford.

Kruschke, J. K. and Liddell, T. M. (2018a). Bayesian data analysis for newcomers. In: Psychonomic Bulletin
& Review 25 (1), pp. 155–177. DOI: 10.3758/s13423-017-1272-110.3758/s13423-017-1272-1.

Kruschke, J. K. and Liddell, T. M. (2018b). The Bayesian New Statistics: Hypothesis testing, estimation,
meta-analysis, and power analysis from a Bayesian perspective. In: Psychonomic Bulletin & Review 25 (1),
pp. 178–206. DOI: 10.3758/s13423-016-1221-410.3758/s13423-016-1221-4.

Kulik, J. A. and Fletcher, J. D. (2016). Effectiveness of Intelligent Tutoring Systems. In: Review of
Educational Research 86 (1), pp. 42–78. DOI: 10.3102/003465431558142010.3102/0034654315581420.

Kurup, L. D., Joshi, A., and Shekhokar, N. (2016). “A review on student modeling approaches in ITS”.
In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom),
pp. 2513–2517.

Laird, J. E. (2012). The Soar Cognitive Architecture. In: AISB Quarterly 134 (1), pp. 1–4.

Laird, J. E., Congdon, C. B.s, Assanie, M., Derbinsky, N., and Xu, J. (2017). The Soar User’s Manual. Version
9.6.0. Draft. Division of Computer Science and EngineeringUniversity of Michigan.

Laird, J. E., Gluck, K., et al. (2017). Interactive Task Learning. In: IEEE Intelligent Systems 32 (4), pp. 6–21.
DOI: 10.1109/mis.2017.312155210.1109/mis.2017.3121552.

Laird, J. E., Lebiere, C., and Rosenbloom, P. S. (2017). A Standard Model of the Mind: Toward a Common
Computational Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics.
In: AI Magazine 38 (4), p. 13. DOI: 10.1609/aimag.v38i4.274410.1609/aimag.v38i4.2744.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. In:
Artif. Intell. 33 (1), pp. 1–64. DOI: 10.1016/0004-3702(87)90050-610.1016/0004-3702(87)90050-6.

Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. SAGE Publications Ltd.

Langley, P. (2012). The Cognitive Systems Paradigm. In: Advances in Cognitive Systems 1, pp. 3–13.

Lee, M. D. and Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling. Cambridge University Pr.

Lehman, J. F., Laird, J. E., and Rosenbloom, P. S. (1998). “A Gentle Introduction to Soar: An Architecture
for Human Cognition. Methods, Models, and Conceptual Issues”. In: An Invitation to Cognitive Science.
Ed. by Scarborough, Don, Sternberg, Saul, and Osherson, Daniel N. Second. Vol. 4. Chap. 6.

Bibliography 161

https://doi.org/10.4018/ijgbl.2011010104
https://doi.org/10.3389/fpsyg.2017.01997
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1002/wcs.72
https://doi.org/10.1016/j.tics.2010.05.001
https://doi.org/10.3758/s13423-017-1272-1
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.3102/0034654315581420
https://doi.org/10.1109/mis.2017.3121552
https://doi.org/10.1609/aimag.v38i4.2744
https://doi.org/10.1016/0004-3702(87)90050-6

Lehman, J. F., Laird, J. E., and Rosenbloom, P. S. (2006). A Gentle Introduction to Soar, An Architecture for
Human Cognition: 2006 Update.

Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., and Van Merriënboer, J. J. G. (2013).
Development of an instrument for measuring different types of cognitive load. In: Behav. Res. Methods
45 (4), pp. 1058–1072. DOI: 10.3758/s13428-013-0334-110.3758/s13428-013-0334-1.

Lieto, A., Bhatt, M., Oltramari, A., and Vernon, D. (2018). The role of cognitive architectures in general
artificial intelligence. In: Cognitive Systems Research 48, pp. 1–3. DOI: 10.1016/j.cogsys.2017.08.00310.1016/j.cogsys.2017.08.003.

Lieto, A. and Radicioni, D. P. (2016). From human to artificial cognition and back: New perspectives on
cognitively inspired AI systems. In: Cognit. Syst. Res. 39, pp. 1–3. DOI: 10.1016/j.cogsys.2016.02.00210.1016/j.cogsys.2016.02.002.

Lin, T., Kinshuk, D., Patel, A., and Hong, H. (2003). “Cognitive Trait Model for Persistent Student
Modelling”. In: Proceedings of EdMedia + Innovate Learning 2003. Ed. by Lassner, David and McNaught,
Carmel. Honolulu, Hawaii, USA: Association for the Advancement of Computing in Education (AACE),
pp. 2144–2147.

Llargues Asensio, J. M., Peralta, J., Arrabales, R., Bedia, M. G., Cortez, P., and Peña, A. L. (2014). Artificial
Intelligence approaches for the generation and assessment of believable human-like behaviour in virtual
characters. In: Expert Syst. Appl. 41 (16), pp. 7281–7290. DOI: 10.1016/j.eswa.2014.05.00410.1016/j.eswa.2014.05.004.

Marcot, B. G. and Penman, T. D. (2018). Advances in Bayesian network modelling: Integration of modelling
technologies. In: Environmental Modelling & Software. DOI: 10.1016/j.envsoft.2018.09.01610.1016/j.envsoft.2018.09.016.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of
Visual Information. New York, NY, USA: W. H. Freeman.

McClelland, J. L. (2009). The Place of Modeling in Cognitive Science. In: Topics in Cognitive Science 1 (1),
pp. 11–38. DOI: 10.1111/j.1756-8765.2008.01003.x10.1111/j.1756-8765.2008.01003.x.

Meent, J.-W. van de, Paige, B., Yang, H., and Wood, F. (2018). An Introduction to Probabilistic Programming.
In: arXiv e-prints, arXiv:1809.10756v1.

Merriënboer, J. J. G. van and Sweller, J. (2005). Cognitive Load Theory and Complex Learning: Recent
Developments and Future Directions. In: Educational Psychology Review 17 (2), pp. 147–177. DOI:
10.1007/s10648-005-3951-010.1007/s10648-005-3951-0.

Millán, E., Loboda, T., and Pérez-de-la-Cruz, J. L. (2010). Bayesian networks for student model engineering.
In: Computers & Education 55 (4), pp. 1663–1683. DOI: 10.1016/j.compedu.2010.07.01010.1016/j.compedu.2010.07.010.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for
processing information. In: Psychological Review 63 (2), pp. 81–97. DOI: 10.1037/h004315810.1037/h0043158.

Monnahan, C. C. and Kristensen, K. (2018). No-U-turn sampling for fast Bayesian inference in ADMB
and TMB: Introducing the adnuts and tmbstan R packages. In: PLOS ONE 13 (5). Ed. by Deng, Yong,
e0197954. DOI: 10.1371/journal.pone.019795410.1371/journal.pone.0197954.

Murphy, K. P. (2001). An Introduction to Graphical Models. Tech. rep.

Nakamura, J. and Csikszentmihalyi, M. (2009). “Flow Theory and Research”. In: The Oxford Handbook of
Positive Psychology. Ed. by Snyder, C. R. and Lopez, S. J. 2nd ed. Oxford University Press. Chap. 18. DOI:
10.1093/oxfordhb/9780195187243.013.001810.1093/oxfordhb/9780195187243.013.0018.

Neal, R. M. (1998). Annealed Importance Sampling. In:

Bibliography 162

https://doi.org/10.3758/s13428-013-0334-1
https://doi.org/10.1016/j.cogsys.2017.08.003
https://doi.org/10.1016/j.cogsys.2016.02.002
https://doi.org/10.1016/j.eswa.2014.05.004
https://doi.org/10.1016/j.envsoft.2018.09.016
https://doi.org/10.1111/j.1756-8765.2008.01003.x
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1016/j.compedu.2010.07.010
https://doi.org/10.1037/h0043158
https://doi.org/10.1371/journal.pone.0197954
https://doi.org/10.1093/oxfordhb/9780195187243.013.0018

Newell, A. (1994). Unified Theories of Cognition. Harvard University Press.

Newell, A. and Simon, H. A. (1976). Computer Science As Empirical Inquiry: Symbols and Search. In:
Commun. ACM 19 (3), pp. 113–126. DOI: 10.1145/360018.36002210.1145/360018.360022.

Norets, Andriy and Pelenis, Justinas (2018). Adaptive Bayesian Estimation of Mixed Discrete-Continuous
Distributions under Smoothness and Sparsity. In:

Oppermann, Reinhard, ed. (1994). Adaptive User Support: Ergonomic Design of Manually and Automatically
Adaptable Software. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statis-
tics: A cognitive-load approach. In: Journal of Educational Psychology 84 (4), pp. 429–434. DOI:
10.1037/0022-0663.84.4.42910.1037/0022-0663.84.4.429.

Paez, M. (2013). “Hierarchical Dynamic Models”. In: The SAGE Handbook of Multilevel Modeling.
Ed. by Scott, M. A., Simonoff, J. S., and Marx, B. D. SAGE Publications Ltd, pp. 335–356. DOI:
10.4135/9781446247600.n1910.4135/9781446247600.n19.

Papamitsiou, Z. and Economides, A. A. (2014). Learning Analytics and Educational Data Mining in
Practice: A Systematic Literature Review of Empirical Evidence. In: Journal of Educational Technology &
Society 17 (4), pp. 49–64.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model for types and levels of human
interaction with automation. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans 30 (3), pp. 286–297. DOI: 10.1109/3468.84435410.1109/3468.844354.

Pavlik Jr., P. I., Brawner, K., Olney, A., and Mitrovic, A. (2013). “A Review of Student Models Used in
Intelligent Tutoring Systems”. In: Design Recommendations for Intelligent Tutoring Systems. Learner
Modeling. Ed. by Sottilare, Robert, Graesser, Arthurt, Hu, Xiangen, and Holden, Heather. Vol. 1. U.S.
Army Research Laboratory. Chap. 5, pp. 39–68.

Pelánek, R. (2015). Metrics for Evaluation of Student Models. In: Journal of Educational Data Mining 7
(2), pp. 1–19.

Pellegrini, A. D. (2009a). The Role of Play in Human Development. OXFORD UNIV PR.

Pellegrini, A. D. (2009b). Research and Policy on Children’s Play. In: Child Development Perspectives 3 (2),
pp. 131–136. DOI: 10.1111/j.1750-8606.2009.00092.x10.1111/j.1750-8606.2009.00092.x.

Plass, J. L., Homer, B. D., and Kinzer, C. K. (2015). Foundations of Game-Based Learning. In: Educational
Psychologist 50 (4), pp. 258–283. DOI: 10.1080/00461520.2015.112253310.1080/00461520.2015.1122533.

Qian, M. and Clark, K. R. (2016). Game-based Learning and 21st century skills: A review of recent
research. In: Computers in Human Behavior 63, pp. 50–58. DOI: 10.1016/j.chb.2016.05.02310.1016/j.chb.2016.05.023.

Rabelo, T., Lama, M., Amorim, R. R., and Vidal, J. C. (2015). “SmartLAK: A big data architecture for
supporting learning analytics services”. In: 2015 IEEE Frontiers in Education Conference (FIE). IEEE. DOI:
10.1109/FIE.2015.734414710.1109/FIE.2015.7344147.

Rabelo, T., Lama, M., Vidal, J. C., and Amorim, R. (2017). “Comparative study of xAPI validation tools”.
In: 2017 IEEE Frontiers in Education Conference (FIE). IEEE. DOI: 10.1109/FIE.2017.819072910.1109/FIE.2017.8190729.

Reid, G. B. and Nygren, T. E. (1988). “The Subjective Workload Assessment Technique: A Scaling
Procedure for Measuring Mental Workload”. In: Advances in Psychology. Elsevier, pp. 185–218. DOI:
https://doi.org/10.1016/S0166-4115(08)62387-0https://doi.org/10.1016/S0166-4115(08)62387-0.

Bibliography 163

https://doi.org/10.1145/360018.360022
https://doi.org/10.1037/0022-0663.84.4.429
https://doi.org/10.4135/9781446247600.n19
https://doi.org/10.1109/3468.844354
https://doi.org/10.1111/j.1750-8606.2009.00092.x
https://doi.org/10.1080/00461520.2015.1122533
https://doi.org/10.1016/j.chb.2016.05.023
https://doi.org/10.1109/FIE.2015.7344147
https://doi.org/10.1109/FIE.2017.8190729
https://doi.org/https://doi.org/10.1016/S0166-4115(08)62387-0

Romero, C. and Ventura, S. (2012). Data mining in education. In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 3 (1), pp. 12–27. DOI: 10.1002/widm.107510.1002/widm.1075.

Rubio, S., Díaz, E., Martín, J., and Puente, J. M. (2004). Evaluation of Subjective Mental Workload:
A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. In: Applied Psychology 53 (1),
pp. 61–86. DOI: 10.1111/j.1464-0597.2004.00161.x10.1111/j.1464-0597.2004.00161.x.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3.
In: PeerJ Computer Science 2, e55. DOI: 10.7717/peerj-cs.5510.7717/peerj-cs.55.

Serrano-Laguna, A., Martı´nez-Ortiz, I., Haag, J., Regan, D., Johnson, A., and Fernández-Manjón, B.
(2017). Applying standards to systematize learning analytics in serious games. In: Computer Standards
& Interfaces 50, pp. 116–123. DOI: 10.1016/j.csi.2016.09.01410.1016/j.csi.2016.09.014.

Sh (2007). “The Physical Symbol System Hypothesis: Status and Prospects. Essays Dedicated to the 50th
Anniversary of Artificial Intelligence”. In: 50 Years of Artificial Intelligence. Ed. by Lungarella, M., Iida, F.,
Bongard, J., and Pfeifer, R. Springer Berlin Heidelberg, pp. 9–17. DOI: 10.1007/978-3-540-77296-5_210.1007/978-3-540-77296-5_2.

Shi, Z., Hu, H., and Shi, Z. (2007). “A bayesian computational cognitive model”. In: Proceedings of the 3rd
International Conference on Neural-Symbolic Learning and Reasoning-Volume 230. Citeseer, pp. 46–51.

Shiffrin, R., Lee, M., Kim, W., and Wagenmakers, E.-J. (2008). A Survey of Model Evaluation Approaches
With a Tutorial on Hierarchical Bayesian Methods. In: Cognitive Science: A Multidisciplinary Journal
32 (8), pp. 1248–1284. DOI: 10.1080/0364021080241482610.1080/03640210802414826.

Shute, V. J. and Zapata-Rivera, D. (2012). “Adaptive Educational Systems”. In: Adaptive Technologies for
Training and Education. Ed. by Durlach, P. J. and Lesgold, A. M. Cambridge University Press. Chap. 1,
pp. 7–27. DOI: 10.1017/CBO9781139049580.00410.1017/CBO9781139049580.004.

Simon, H. A. (1957). Models of man: social and rational; mathematical essays on rational human behavior
in society setting. eng. 275. Wiley.

Sottilare, R. A. and Gilbert, S. (2011). Considerations for adaptive tutoring within serious games: authoring
cognitive models and game interfaces. In: p. 10.

Squire, K. (2005). Changing the Game: What Happens When VideoGames Enter the Classroom? In:
Innovate: Journal of Online Education 1 (5) (6).

Streicher, A. and Roller, W. (2017). “Interoperable Adaptivity and Learning Analytics for Serious Games
in Image Interpretation”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10474 LNCS, pp. 598–601. DOI:
10.1007/978-3-319-66610-5_7110.1007/978-3-319-66610-5_71.

Streicher, A., Roller, W., and Biegemeier, C. (2017). “Application of Adaptive Game-based Learning
in Image Interpretation”. In: 11th European Conference on Game-Based Learning ECGBL 2017. Graz:
Academic Conferences and Publishing International Limited, pp. 975–978.

Streicher, A. and Smeddinck, J. D. (2016). “Personalized and Adaptive Serious Games”. In: Entertainment
Computing and Serious Games. Ed. by Dörner, R., Göbel, S., Kickmeier-Rust, M., Masuch, M., and Zweig,
K. Cham: Springer International Publishing, pp. 332–377. DOI: 10.1007/978-3-319-46152-6_1410.1007/978-3-319-46152-6_14.

Streicher, A., Szentes, D., and Gundermann, A. (2016). “Game-Based Training for Complex
Multi-institutional Exercises of Joint Forces”. In: Adaptive and Adaptable Learning. Ed. by Ver-
bert, K., Sharples, M., and Klobučar, T. Springer International Publishing, pp. 497–502. DOI:
10.1007/978-3-319-45153-4_4910.1007/978-3-319-45153-4_49.

Bibliography 164

https://doi.org/10.1002/widm.1075
https://doi.org/10.1111/j.1464-0597.2004.00161.x
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1016/j.csi.2016.09.014
https://doi.org/10.1007/978-3-540-77296-5_2
https://doi.org/10.1080/03640210802414826
https://doi.org/10.1017/CBO9781139049580.004
https://doi.org/10.1007/978-3-319-66610-5_71
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1007/978-3-319-45153-4_49

Sun, R. (2004). Desiderata for cognitive architectures. In: Philosophical Psychology 17 (3), pp. 341–373.
DOI: 10.1080/095150804200028672110.1080/0951508042000286721.

Sun, R. (2007). The importance of cognitive architectures: an analysis based on CLARION. In: J. Exp.
Theor. Artif. Intell. 19 (2), pp. 159–193. DOI: 10.1080/0952813070119156010.1080/09528130701191560.

Sun, R., ed. (2008). The Cambridge Handbook of Computational Psychology. Cambridge Handbooks in
Psychology. Cambridge University Press. DOI: 10.1017/CBO978051181677210.1017/CBO9780511816772.

Sun, R. (2009). Theoretical status of computational cognitive modeling. In: Cognit. Syst. Res. 10 (2),
pp. 124–140. DOI: 10.1016/j.cogsys.2008.07.00210.1016/j.cogsys.2008.07.002.

Sun, R., Slusarz, P., and Terry, C. (2005). The Interaction of the Explicit and the Implicit in
Skill Learning: A Dual-Process Approach. In: Psychological Review 112 (1), pp. 159–192. DOI:
10.1037/0033-295x.112.1.15910.1037/0033-295x.112.1.159.

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. In: Cognitive Science
12 (2), pp. 257–285. DOI: 10.1207/s15516709cog1202_410.1207/s15516709cog1202_4.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. In: Learning and
Instruction 4 (4), pp. 295–312. DOI: 10.1016/0959-4752(94)90003-510.1016/0959-4752(94)90003-5.

Sweller, J. (2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. In:
Educational Psychology Review 22 (2), pp. 123–138. DOI: 10.1007/s10648-010-9128-510.1007/s10648-010-9128-5.

Sweller, J., Merrienboer, J. J. G. van, and Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional
Design. In: Educational Psychology Review 10 (3), pp. 251–296. DOI: 10.1023/A:102219372820510.1023/A:1022193728205.

Taatgen, N. and Anderson, J. R. (2010). The Past, Present, and Future of Cognitive Architectures. In:
Topics in Cognitive Science 2 (4), pp. 693–704. DOI: 10.1111/j.1756-8765.2009.01063.x10.1111/j.1756-8765.2009.01063.x.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. (2011). How to Grow a Mind: Statistics,
Structure, and Abstraction. In: Science 331 (6022), pp. 1279–1285. DOI: 10.1126/science.119278810.1126/science.1192788.

Thagard, P. (2005). Mind: Introduction to Cognitive Science. A Bradford Book.

Thomson, R. and Lebiere, C. (2013). “Constraining Bayesian Inference with Cognitive Architectures:
An Updated Associative Learning Mechanism in ACT-R”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society. Vol. 35.

Toh, S. C. (2005). Recent Advances in Cognitive Load Theory Research: Implications for Instructional
Designers. In: MOJIT 2 (3), pp. 106–117.

Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current develop-
ments, problems and opportunities. In: Computers in Human Behavior 55, pp. 1185–1193. DOI:
10.1016/j.chb.2015.02.01410.1016/j.chb.2015.02.014.

Tsang, P. S. and Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings.
In: Ergonomics 39 (3), pp. 358–381. DOI: 10.1080/0014013960896447010.1080/00140139608964470.

Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., and Van Maanen, L. (2017). Ap-
proaches to analysis in model-based cognitive neuroscience. In: J. Math. Psychol. 76, pp. 65–79.
DOI: 10.1016/j.jmp.2016.01.00110.1016/j.jmp.2016.01.001.

Bibliography 165

https://doi.org/10.1080/0951508042000286721
https://doi.org/10.1080/09528130701191560
https://doi.org/10.1017/CBO9780511816772
https://doi.org/10.1016/j.cogsys.2008.07.002
https://doi.org/10.1037/0033-295x.112.1.159
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1111/j.1756-8765.2009.01063.x
https://doi.org/10.1126/science.1192788
https://doi.org/10.1016/j.chb.2015.02.014
https://doi.org/10.1080/00140139608964470
https://doi.org/10.1016/j.jmp.2016.01.001

Vehtari, A., Gelman, A., and Gabry, J. (2016). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. In: Statistics and Computing 27 (5), pp. 1413–1432. DOI:
10.1007/s11222-016-9696-410.1007/s11222-016-9696-4.

Vernon, D., Hofsten, C. von, and Fadiga, L. (2016). Desiderata for developmental cognitive architectures.
In: Biologically Inspired Cognitive Architectures 18, pp. 116–127. DOI: 10.1016/j.bica.2016.10.00410.1016/j.bica.2016.10.004.

Vernon, D., Metta, G., and Sandini, G. (2007). A Survey of Artificial Cognitive Systems: Implications for
the Autonomous Development of Mental Capabilities in Computational Agents. In: IEEE Trans. Evol.
Comput. 11 (2), pp. 151–180. DOI: 10.1109/TEVC.2006.89027410.1109/TEVC.2006.890274.

Vidal, J. C., Rabelo, T., and Lama, M. (2015). “Semantic Description of the Experience API Specifi-
cation”. In: 2015 IEEE 15th International Conference on Advanced Learning Technologies. IEEE. DOI:
10.1109/ICALT.2015.12810.1109/ICALT.2015.128.

Vygotsky, L. S. (1978). Mind in society. Harvard University Press.

Wagenmakers, E.-J. and Farrell, S. (2004). AIC model selection using Akaike weights. In: Psychonomic
Bulletin & Review 11 (1), pp. 192–196. DOI: 10.3758/BF0320648210.3758/BF03206482.

Winn, J. and Heeter, C. (2009). Gaming, Gender, and Time: Who Makes Time to Play? In: Sex Roles
61 (1-2), pp. 1–13. DOI: 10.1007/s11199-009-9595-710.1007/s11199-009-9595-7.

Woolf, B. P. (2009). Building Intelligent Interactive Tutors Student-centered strategies for revolutionizing
e-learning. San Francisco, CA, USA: Morgan Kaufmann, p. 480. DOI: 10.1007/BF0268046010.1007/BF02680460.

Bibliography 166

https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1016/j.bica.2016.10.004
https://doi.org/10.1109/TEVC.2006.890274
https://doi.org/10.1109/ICALT.2015.128
https://doi.org/10.3758/BF03206482
https://doi.org/10.1007/s11199-009-9595-7
https://doi.org/10.1007/BF02680460

A Supplementary Material for Chapter ConceptConcept

167

Ta
bl

e
A

.1
.:

Li
st

of
al

li
m

pl
em

en
te

d
m

od
el

si
n

th
e

Co
gI

U
M

pa
ck

ag
e.

Va
ri

ab
le

s

M
od

el
To

ta
l

O
bs

er
va

bl
e

D
et

er
m

in
is

ti
c

Pe
rs

on
al

&
C

on
ce

pt
ua

l
Pe

rs
on

al
C

on
ce

pt
ua

l
G

lo
ba

l

M
1

3N
p
+

7N
c

k p
c,

s p
c

cl
pc

,g
cl

pc
,δ

pc
cl

pc
,g

cl
pc

,δ
pc

,
p o

bs
m

p
,ψ

p
µ

ic
l,
µ

ec
l,
σ

ic
l,
σ

ec
l,

ic
l c

,e
cl

c
-

M
2

3N
p
+

7N
c
+

1
k p

c,
s p

c
cl

pc
,g

cl
pc

,δ
pc

cl
pc

,g
cl

pc
,δ

pc
,

p o
bs

m
p
,ψ

p
µ

ic
l,
µ

ec
l,
σ

ic
l,
σ

ec
l,

ic
l c

,e
cl

c
σ

s

M
3

4N
p
+

7N
c
+

3
k p

c,
s p

c
cl

pc
,g

cl
pc

,δ
pc

cl
pc

,g
cl

pc
,δ

pc
,

p o
bs

m
p
,ψ

p
,ν

s
µ

ic
l,
µ

ec
l,
σ

ic
l,
σ

ec
l,

ic
l c

,e
cl

c
σ

s,
µ
ν
,σ

ν

M
4

6N
p
+

8N
c
+

6
k p

c,
s p

c,
t p

c
cl

pc
,g

cl
pc

,δ
pc

cl
pc

,g
cl

pc
,δ

pc
,

p o
bs

m
p
,ψ

p
,ν

s,
α

t,
β

t
µ

ic
l,
µ

ec
l,
σ

ic
l,
σ

ec
l,

ic
l c

,e
cl

c,
t m

in
σ

s,
µ
ν
,σ

ν
,σ

t,
σ
α
,σ

β

168

B Supplementary Material for Chapter
ImplementationImplementation

169

0
20
40
60
80

100
120

Fr
eq

ue
nc

y

0

50

100

150

0

50

100

150

200 Model 1

0

20

40

60

Fr
eq

ue
nc

y

0
25
50
75

100
125

0

50

100

150

200 Model 2

0 2000 4000 6000 8000 10000
neff

0

50

100

150

Fr
eq

ue
nc

y

1.000 1.005 1.010 1.015 1.020 1.025
R

0

50

100

150

0.0 0.1 0.2 0.3 0.4
MCMC Error

0
50

100
150
200
250 Model 3

Summary Statistics for MCMC Traces

Figure B.1.: Exemplary output of the plot_trace_summary() function. Here, three models, or trace objects,
are compared with each other. For each trace, the plot shows three histograms: the number
of effective sample size, the potential scale reduction R̂ and the MCMC standard error. The
scale of the x-axes is shared per column to help in comparing the results. Different models
have different colors.

0.0 0.2 0.4 0.6 0.8 1.0
Motivation: mp [0, 1]

0.66 1.0
95% HPD

mean=0.87

Subject 10
Prior Density

0.0 0.2 0.4 0.6 0.8 1.0
Motivation: mp [0, 1]

0.33 0.99
95% HPD

mean=0.64

Subject 60

Posterior Distribution

Figure B.2.: Exemplary output of the plot_posterior() function. Here, one trace object, the subject ids
10 and 60 and the variable name ‘m_p’ were passed as arguments. The posterior distribution
is shown as histogram with the mean value as point estimate. The prior distribution for this
parameter is also shown as histogram to allow for comparison between the prior and posterior
distribution for this model parameter. The 95 % HDI is shown with both end points at the
bottom of each histogram and refers to the posterior distribution. If multiple traces were
given, the posterior of each model would have been plotted in their own row.

170

0 2 4 6 8
clpc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n mean = 2.99

mode = 2.80

mean = 5.11
mode = 4.58

mean = 6.52

mode = 6.30

Concept Differences in Posterior Distribution

Concept 1
Concept 2
Concept 3

Figure B.3.: Exemplary output of the show_concept_differences() function. Here, one trace object and
the variable name ‘cl_pc’ for a model fit to observable data with three concepts were passed
as arguments. The distribution of the means over all subjects per sample of the trace object
is shown as kernel density estimation with the mean and mode values as point estimates.
Different concepts are colored in blue, orange and green.

171

Subject 1 to 100
0

2

4

6

8

10

12

14

16

cl
pc

R
0

Posterior Distribution per Subject

N = [1, 50]
N = [51, 100]

(a) Posterior distribution per subject shown as box plots. Different groups are colored in blue and orange. The
whiskers extend the box by 1.5 of the proportion of the IQR.

0 2 4 6 8 10 12 14
clpc

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f M
ea

n
Di

st
rib

ut
io

n

Group Differences in Posterior Distribution

N = [1, 50]
N = [51, 100]

(b) Distribution of the group means of the posterior distribution over all subjects in a group. Both mean and mode
are shown as point estimates. Different groups are colored in blue and orange. The density is estimated by a
kernel density estimation.

Figure B.4.: Exemplary output of the show_group_differences() function. Here, one trace object, the
variable name ‘cl_pc’, and the cutpoints [50] where given, because the observable data
consists of 100 subjects, split equally into two groups. The function produces two outputs:
a) the posterior distribution for each subject, shown as box plots, and b) the distribution of
group means by calculating the mean value for all subjects within group for one trace sample.

172

Subject 1 to 100
0.0

0.2

0.4

0.6

0.8

1.0

s p
c

[0
,1

]

Posterior Predictive Distribution per Subject

observation
N = [1, 50]
N = [51, 100]

(a) Posterior predictive distribution per subject shown as box plots, extended with the true value F for the observable
variable. Different groups are colored in blue and orange. The whiskers extend the box by 1.5 of the proportion
of the IQR.

0.0 0.2 0.4 0.6 0.8 1.0
Score: spc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

Posterior Predictive Distribution
posterior predictive
observation
posterior predictive mean

(b) The distribution of the observable data (solid black line) and the model’s predictions (magenta lines) from
samples of the posterior predictive distribution shown as kernel density estimations. Each of the prediction
curves shows the distribution of the data for a sample drawn from the model’s posterior predictive distribution.
All prediction curves are aggregated to a mean posterior prediction (blue dashed line).

Figure B.5.: Exemplary output of the plot_posterior_predictive() function. Here, the observable data for
100 subjects, divided into two groups, a posterior predictive trace object with 1000 samples,
the variable name ‘s_pc’, and the cutpoints [50] were given. The function produces two
outputs: a) the posterior predictive distribution for each subject, shown as box plots and with
the true observable values, and b) the distribution of the observable variable compared to
the predictions of the model, drawn as samples from the posterior predictive distribution.

173

M1 M2 M3
Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Po
st

er
io

r P
re

di
ct

iv
e

Er
ro

r

Accuracy Measure: MAE, Observation: kpc

M1 M2 M3
Model

0.0

0.1

0.2

0.3

0.4

0.5

Accuracy Measure: RMSE, Observation: spc

Figure B.6.: Exemplary output of the plot_predictive_error() function. Here, a list of three models, a list
of three posterior predictive trace objects, the observable data with 100 subjects, divided into
two groups, a list of observable variable names [‘k_pc’, ‘s_pc’], and a list of measures [‘MAE’,
‘RMSE’] was given. For each observable variable the function calculates the prediction error as
specified by the measure for each model based on the difference between the observations
and the model’s predictions. Mean absolute error (MAE) is used for discrete variables and
root mean squared error (RMSE) for continuous variables.

174

Listing B.1: Source code for CogiumImprovedHierarchical3Obs of the CogIUM package.

1 class CogiumImprovedHierarchical3Obs(BaseModel):

2 """

3 Final statistical model. Use of gcl_pc and delta_pc to model k_pc, s_pc and t_pc.

4 """

5

6 def __init__(self, data: np.ndarray, wm_capacity: int, name: str = ’’, model: Model = None):

7 self.data = data

8 self.name = ’ImprovedHierarchical3Obs’

9

10 Np, Nc, _ = data.shape

11 wm = wm_capacity

12

13 with pm.Model(name=name, model=model) as model:

14 # global latent var

15 sigma_s = pm.HalfCauchy(’sigma_s’, beta=1, testval=0.1)

16 sigma_t = pm.HalfCauchy(’sigma_t’, beta=1, testval=0.1)

17 sigma_nu = pm.HalfCauchy(’sigma_nu’, beta=1, testval=0.1)

18 sigma_alpha = pm.HalfCauchy(’sigma_alpha’, beta=1)

19 sigma_beta = pm.HalfCauchy(’sigma_beta’, beta=1)

20 mu_nu = pm.Normal(’mu_nu’, mu=0.5, sd=0.01, testval=0.5)

21

22 # personal variables

23 m_p = pm.Beta(’m_p’, alpha=3, beta=1, testval=0.9, shape=(Np, 1))

24 psi_p = pm.Beta(’psi_p’, alpha=2, beta=2, testval=0.5, shape=(Np, 1))

25 nu_s_p = pm.Bound(pm.Normal, lower=0, upper=1)(

26 ’nu_s_p’, mu=mu_nu, sd=sigma_nu, shape=(Np, 1)

27)

28 alpha_t_p = pm.HalfNormal(’alpha_t_p’, sigma_alpha, shape=(Np, 1))

29 beta_t_p = pm.HalfNormal(’beta_t_p’, sigma_beta, shape=(Np, 1))

30

31 # conceptual var

32 mu_icl = pm.Gamma(’mu_icl’, alpha=2, beta=0.5, shape=(Nc, 1), testval=2)

33 mu_ecl = pm.Gamma(’mu_ecl’, alpha=2, beta=0.5, shape=(Nc, 1), testval=2)

34 sigma_icl = pm.HalfCauchy(’sigma_icl’, 5, shape=(Nc, 1), testval=0.1)

35 sigma_ecl = pm.HalfCauchy(’sigma_ecl’, 5, shape=(Nc, 1), testval=0.1)

36 icl_c = pm.Bound(pm.Normal, lower=1)(’icl_c’, mu=mu_icl, sd=sigma_icl, shape=(Nc, 1))

37 ecl_c = pm.Bound(pm.Normal)(’ecl_c’, mu=mu_ecl, sd=sigma_ecl, shape=(Nc, 1))

38 t_min = pm.Gamma(’t_min’, alpha=2, beta=0.5, shape=(Nc, 1))

39

40 # deterministic variables

41 cl_pc = pm.Deterministic(

42 ’cl_pc’,

43 tensor.outer(1 - psi_p, icl_c) + tensor.outer(psi_p, ecl_c) / psi_p # Np x Nc matrix

44)

175

45

46 gcl = (tensor.outer(m_p * wm, ecl_c) /

47 ecl_c.T - tensor.outer(m_p, ecl_c) / m_p)

48 gcl = tensor.where(gcl <= 0, 1e-4, gcl)

49 gcl_pc = pm.Deterministic(

50 ’gcl_pc’, gcl / wm

51)

52

53 delta = (wm - cl_pc)

54 delta_pc = pm.Deterministic(

55 ’delta_pc’, delta / wm

56)

57

58 # observed variables

59 p_obs = pm.Beta(

60 ’p_obs’, alpha=1 + gcl_pc, beta=1 - delta_pc, shape=(Np, Nc)

61)

62

63 k_pc = pm.Bernoulli(

64 ’k_pc’, p=p_obs, observed=self.data[:, :, 0].reshape(Np, Nc)

65)

66

67 s_pc = pm.Normal(

68 ’s_pc’,

69 mu=gcl_pc + nu_s_p * delta_pc,

70 sd=sigma_s,

71 observed=self.data[:, :, 1].reshape(Np, Nc)

72)

73

74 t_pc = pm.Normal(

75 ’t_pc’,

76 mu=t_min.T + alpha_t_p * (1 - gcl_pc) - beta_t_p * delta_pc,

77 sd=sigma_t,

78 observed=data[:, :, 2].reshape(Np, Nc)

79)

80

81 self.model = model

176

	Introduction
	Motivation
	Research Objectives and Intended Approach
	Project Environment
	Structure

	Conceptual Background
	How to Model User Behavior – Paradigms in Cognitive Science
	General artificial intelligence – cognitive architectures
	Handle uncertainty – Bayesian modeling

	How to Capture User Behavior – Experience API
	How to Think About User Behavior – Learner Attributes
	Cognitive Load Theory

	Literature Review
	Computational Cognitive Modeling
	Cognitive architectures
	The student model in Intelligent Tutoring Systems

	Model Evaluation and Model Comparison
	Posterior predictive check
	RMSE and MAE
	WAIC and LOO
	Bayes factor
	Hierarchical models

	Measuring Cognitive Load

	Concept
	Interaction Between Learner and Cognitive User Model
	Interaction Patterns for Lost Earth
	Identify the data

	Realizing Cognitive User Models
	With cognitive architectures
	With (hierarchical) Bayesian models

	Implementation
	Bayesian Inference with PyMC3
	The CogIUM Python Package
	The data generator
	The model subpackage
	The plots

	Validation
	Model comparison – a case study
	Model extension – a case study
	Extended model validation
	Discussion

	How to Extend the Model Further

	Application Example
	Conclusion and Recommendations
	Assessment of Requirements
	Open Questions and Future Work

	Bibliography
	Supplementary Material for Chapter Concept
	Supplementary Material for Chapter Implementation

