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Abstract. In this paper, we present an adaptation the Bag of Features

(BoF) concept to 3D shape retrieval problems. The BoF approach has
recently become one of the most popular methods in 2D image retrieval.
We extent this approach from 2D images to 3D shapes. Following the
BoF outline, we address the necessary modifications for the 3D extension
and present novel solutions for the parameterization of 3D patches, a 3D
rotation invariant similarity measure for these patches and a method for
the codebook generation. We experimentally evaluate the performance
of our methods on the Princeton Shape Benchmark.

1 Introduction

The retrieval of digitized 3D objects is a rising topic. Similar to 2D image re-
trieval, which recently has become a very popular research topic, the constantly
growing size of available 3D data triggers the need for effective search meth-
ods. There have been several practically important applications to 3D object
retrieval, such as retrieving 3D protein structures from very large databases in
bio-informatics and computational chemistry [1] or the retrieval of 3D objects
from depth images (laser range scans) in robot navigation [2].
We apply our methods to a more academic problem setting given by the Prince-
ton Shape Benchmark (PSB) [3], which has become a standard benchmark for
3D shape retrieval.

1.1 Related Work

We limit our brief review of the related work to methods which have been applied
to the Princeton Shape Benchmark and thus can be compared to our results later
on.
The Spherical Extent Function (EXT) [4] projects the distance of the ob-
ject center to each point of the object surface onto the enclosing outer sphere.
The resulting spherical distance map is then expanded in Spherical Harmonics
from which the SHabs (4) feature is extracted. The Spherical Harmonic De-
scriptor (SHD) [5] is very similar to EXT, it also computes SHabs over several
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radii, but organizes the results in a 2D histogram. The Light Field Descriptor
(LFD) [6] uses multiple 2D views of 3D shapes. Rotation invariance is achieved
by a collection of 100 2D views per object, which are rendered orthogonal to the
outer enclosing sphere of the object. Then a set of 2D features (mostly geometric
and Zernike moments) is computed for each 2D view. Currently, LFD is the best
performing approach on the PSB.

All of these methods query samplesdatabase
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Fig. 1. Schematic overview of the ”Bag of Features”
concept.

have in common that they
try to model object shapes
at a global level which has
the disadvantage that the
assumption that objects
of the same class are shar-
ing the same base shape
is not always adequate -
especially when one con-
siders more semantic group-
ings with high intra-class
variance as presented by
the PSB. In 2D image re-
trieval, these problems have
been approached quite suc-
cessfully by BoF methods
(see section 2). Hence, there
have been several previ-
ous attempts to introduce
a BoF approach for 3D
shape retrieval, like [7],
using Spin Images as lo-
cal 3D patch descriptors. However, the results of these attempts were rather
poor (see experiments), which we suspect to be mostly due to the limited dis-
crimination power of spin images. We try to overcome these problems by the use
of other local 3D patch descriptors.

2 3D Shape Retrieval with Local Patches

2.1 The Bag of Features Concept

One ”state of the art” approach in modern 2D image retrieval is commonly
known under the name Bag of Features (BoF) [8][9]. The method of BoF is
largely inspired by the Bag of Words [10] concept which has been used in text
retrieval for quite some time.
Even though there are countless variations of retrieval algorithms emerging un-
der the label Bag of Features [8][9] and it is hard to capture the actual BoF
algorithm, there is a common concept which is shared by all of theses methods.
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Local Features: The central aspect of the BoF concept is to move away from a
global image description and to represent images as a collection of local proper-
ties. These local properties are derived in form of (invariant) image features,
e.g. the very popular SIFT features [11], which are computed on small sub-
images called patches. The patches, are simply small rectangular regions which
are extracted around interest points (see section 4).
Codebook Representation: The second main aspect of the ”Bag of Features” con-
cept is the way images are represented as collections of local features and how
two or more of these representations can be compared. The basic idea here is
to use a class independent clustering over the feature representations of all
patches (from all database samples). The representatives of the resulting clus-
ters are then used as entries of a unified (class independent) codebook [12].
Each patch is then mapped against the entries of this codebook, such that an
image is represented as the histogram over the best codebook matches of its
patches. The similarity of images can then be obtained by comparing the BoF
histograms, e.g. by histogram intersection.
Figure 1 gives a schematic overview of the computation steps in the codebook
generation and retrieval stage of the ’Bag of Features” concept.

3 Mathematical Foundations

A key aspect of our 3D extension of the BoF concept is the idea to parameterize
the 3D patches as spheres and to provide a fast rotation invariant similarity mea-
sure for these spherical patches. The spherical representation is a natural choice
for local 3D patches which allows us to rely on the well established mathemat-
ical foundations of the angular momentum theory [13] to perform all necessary
computation in the harmonic domain.

Spherical Harmonics (SH) [13] form an orthonormal base on the 2-sphere. Ana-
logical to the Fourier Transform, any given real valued and continuous signal f on
a sphere with its parameterization over the angles Θ,Φ (latitude and longitude
of the sphere) can be represented by an expansion in its harmonic coefficients:

f(Θ,Φ) =

∞∑

l=0

m=l∑

m=−l

f̂ l
mY

l
m(Θ,Φ), (1)

where l denotes the band of expansion,m the order for the l-th band, f̂ l
m the har-

monic coefficients and Y l
m the complex conjugate of the harmonic base functions

Y l
m that are computed as:

Y l
m(Θ,Φ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
P l

m(cosΘ)eimΦ, (2)

where P l
m is the associated Legendre polynomial.
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Rotations in SH: Rotations R(ϕ, θ, ψ)f in the Euclidean space find their equiv-
alent representation in the harmonic domain in terms of the so called Wigner
D-Matrices [13], which form an irreducible representation of the rotation group
SO(3). For each band l, Dl(ϕ, θ, ψ) (or abbreviated Dl(R)) defines a band-wise
rotation in the SH coefficients, using the Euler notation in zyz-convention with
ϕ, ψ ∈ [0, 2π[ and θ ∈ [0, π[ to parameterize the rotations R ∈ SO(3). Hence, a
rotation in the Euclidean space can be estimated in the harmonic domain (with
a maximum expansion band bmax), by

Rf ≈

bmax∑

l=0

l∑

m=−l

l∑

n=−l

Dl
mn(R)f̂ l

mY
l
m. (3)

The SHabs Feature: A SH representation of spherical signals raises the demand
for a (rotational invariant) similarity measure between two or more signals. A
popular choice [5] is to use the band-wise absolute values of the harmonic power-
spectrum, which we refer to as SHabs feature:

SHabs(f̂
l) :=

m=l∑

m=−l

‖f̂ l
m‖. (4)

The main drawback of the SHabs features is that it obtains its rotation invariance
by neglecting the phase information. Hence, SHabs is an incomplete feature
which suffers from its ambiguities.

Fast Correlation in SH: We follow a different approach to obtain a rotation
invariant similarity measure between harmonic expansions: the full correlation
over all possible rotation angles: The full correlation f#g : SO(3) → R of two
signals f and g under the rotation R ∈ SO(3) on a 2-sphere is given as:

(f#g)(R) :=

∫

S2

f(Rg) dφdθdψ. (5)

Fehr et. all. [14] proposed a method for a fast computation of (5) in the harmonic
domain by use the Convolution Theorem. Starting from the substitution of f and
g in (5) by their SH expansions

(f#g)(R) =
∑

lmn

Dl
mn(R)f̂ l

mĝ
l
n, (6)

their method provides the correlation value for each possible ration in a dis-
crete 3D matrix C# which represents the angular space over the rotation angles
(φ, θ, ψ):

C# = F−1(Ĉ#), (7)

with

Ĉ#(m,h,m′) =

bmax∑

l=0

dl
mh(π/2)dl

hm′(π/2)f̂ l
mĝ

l
m′ (8)
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and m,h,m′ ∈ {−l, . . . , l}. The rotation invariant correlation maximum is then
simply the maximum value in C#. Please refer to [14] details on (7) and proofs.

Normalized Cross-Correlation: We follow an approach which is widely known
from the normalized cross-correlation of 2D images: First, we subtract the mean
from both functions prior to the correlation and then divide the results by the
variances:

(f#g)norm(R) :=

∫

S2

(
f − E(f)

)(
R

(
g − E(g)

))

σfσg

sinΘdΦdΘ. (9)

Analogous to Fourier transform, we obtain the expectation values E(f) and E(g)
directly from the 0th SH coefficient. The variances σf and σg can be estimated
from the band-wise energies:

σf ≈

√∑

l

|f̂l|2. (10)

Discrete Spherical Harmonic Expansions: For practical applications, we need a
discrete version of the Spherical Harmonic transform, i.e. we need to obtain the
frequency decomposition of 3D signals at discrete positions x ∈ X on discrete
spherical surfaces S of radius r:

S[r] (x) := {x′ ∈ R
3| ‖x− x′‖2 = r}. (11)

To obtain the discrete Vectorial Harmonic transformation SH
(
S[r](x)

)
, we pre-

compute discrete approximations Ỹ l
m[r] of the orthonormal harmonic base func-

tions as:

SH
(
X |S[r](x)

)l

m
:=

∑

xi∈S[r](x)

X(xi)Ỹ
l
m[r](xi). (12)

In order to compute the harmonic transformation of the neighborhoods around
each voxel of X , we perform a fast convolution of the pre-computed based func-
tions with the discrete input data:

SH[r] (X)
l

m = X ∗ Ỹ l
m[r]. (13)

4 Algorithm

Our approach directly follows the Bag of Features scheme (see figure 1). With ex-
ception of an additional preprocessing, we simply walk through the BoF pipeline
step by step and replace 2D specific algorithms with our own 3D methods.
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Preprocessing: Prior to the actual BoF pipeline, we apply a series of pre-processing
steps to the objects in the PSB database: primarily, we have to render the ob-
jects from triangular mesh format to a volume representation where the voxels
inside the object are set to 1 and the voxels outside to 0. We use this rendering
step to align the object in the geometric center of the volume and to normalize
the object size to a fixed height of the object bounding box. Thus, we obtain
translation and scale invariant volume representations of the models.

Sampling Points: The next step, and first in the actual BoF pipeline, is to de-
termine the location of the local patches. In the original 2D setting, where the
objects of interest are located in more or less cluttered scenes, the detection of
interest points is a crucial step: important parts of the target objects should not
be missed, while the overall number of interest points directly affects the com-
putational complexity, so that one tries to avoid large numbers of false positive
points. For our 3D case, the selection of the interest points is by far less cru-
cial since we have already segmented objects. Hence, we simply apply a simple
equidistant sampling on the object surface.

Extracting Local Patches: The next step is to extract the local patches p(x) at
the location of the sampling points. In contrast to the original 2D case, were the
patches are rectangular areas, we extract spherical patches which are centered
in the respective sampling points.
Given the volume rendering of a model X and sampling points at positions x,
the associated patches are then represented by a series of m concentric spherical
neighborhoodsX |S[ri](x) (12) at different radii ri ∈ {r1, . . . , rn}. We then expand
the local patches radius by radius in Spherical Harmonics. Hence, we define a
patch p(x) as collection of radius-wise harmonic expansions up to some upper
band l = bmax around x :

p(x) :=
{
SH

(
X |S[r1](x)

)
, . . . ,SH

(
X |S[rn](x)

)}
. (14)

Figure 3a and 3b illustrate the patch extraction. The motivation to use spherical
instead of rectangular patches is obvious considering that we need to obtain full
rotation invariance, which often times can be neglected in the case of 2D image
retrieval.

Generating the Codebook: While the preprocessing and patch extraction has to
be done for all reference and query objects, we now turn to the off-line procedure
which is only performed on the initial database. The off-line stage has two dif-
ferent stages: first, we have to generate a problem specific but class independent
codebook of local patches, which is done via clustering, and then, we have to
represent the database samples in terms of histograms over the codebook.
After the extraction of the patches, we use a simple radius-wise k-means cluster-
ing [15] to obtain k patch clusters for each radius of the patch parameterization
independently. The key for the clustering is the choice of the similarity function
d: we apply the normalized correlation (10) for the Spherical Harmonic domain
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(a) (b) (c)

Fig. 3. (a) Extracting spherical patches at the sampling points. (b) extraction of spheri-
cal neighborhoods (patches) around the sampling points. (c) Example clustering results
where patches were extracted at all object voxels.

to measure the rotation invariant similarity of two patches:

d
(
p(xi), p(xj)

)
:= p(xi)#p(xj). (15)

In order to reduce the computational complexity, we do not apply the clus-
tering on all patches from all database samples. Our experiments showed (see
5), that it is sufficient to use a small random subset of 10% of the database to
generate a stable set of clusters.
It should be noted, that the class label of the database samples is completely
neglected during the clustering since our goal is to obtain a general, class inde-
pendent representation of local patches in the later codebook. Figure 3c shows
example results of the clustering. The final step towards the generation of the
codebook is based on the previous clustering. We simply use the cluster centers
as representatives in the codebook. Since we perform the clustering for each ra-
dius of the patch parameterization independently, we obtain separate codebooks
for each radius.

Fig. 4. Sample generalized codebook entry: the figure illustrates the location (blue
circle) of a sample codebook entry on several different objects.
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4.1 Retrieval by Feature Histograms

After we learned the codebook based on a small subsection of the database, we
can pursuit the BoF approach without further changes. As in the original Bag
of Features concept, all off the database samples are represented as histograms
over the codebook entries. We simply use our fast normalized cross-correlation
(9) to match all patches of an object with the codebook and rise the count of
the histogram bin associated with the best match. Figure 1 illustrates a example
codebook histogram representation of an object.

Retrieval Query: Given an query object, we perform the preprocessing and patch
extraction steps and then compute its codebook histogram representation just
as we do it for the database. We then use a normalized histogram intersection
as similarity measure to find the best matches in the database.

5 Experimental Evaluation

We evaluate our proposed approach on the standard PSB experimental setup,
as described in [3]. We use the base scheme, where the 1814 shapes of the PSB
are split into equally large database and query sets.

General Experimental Setup. We use a rendering normalized to the size of 64
voxels on the longest edge of the bounding box (see 4). The codebook is built form
a random selection of 10% of the training set (more samples simply increase the
computation time without notable effect on the later recognition rate). 8 different
radii with ri ∈ {3, 4, 5, 6, 7, 8, 10, 12} are used to compute the codebook, where
bmax of the harmonic expansion is increased according with the radius (from 3
to 7). The codebook size k is set to 150 bins per radius.

Given these fixed parameters, we obtained the following results for our ap-
proach on the PSB base test set: table 5 shows the k = 1 nearest neighbor results
of our method compared to the results known from literature. Figure 6 shows
the precision-recall plots provided by the standardized PSB evaluation. In order
to emphasize the use of our SHcorr feature, we additionally implemented a BoF
approach where we used the SHabs feature as patch descriptor.

6 Conclusions and Outlook

The experiments showed that our approach achieves competitive results on the
difficult PSB. The main drawback of our method is that we cannot be sure
if the given results are actually representing the global optimum of what can
be achieved with our method or if we are stuck in a local maximum of the
parameter space. Due to the large number of parameters, we face the problem
that the maximum search in the parameter space turns out to be quite tedious.
A possible further extension of our histogram approach could be to localize
the patch positions. Similar to the 2D approach in [16], we could increase the
discrimination power by replacing the global histogram with a localized patch
histogram.
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Features PSB base level

LFD 65.7%†(61.9%)∗

BoF with SHcorr 62.4%

SHD 55.6%†(52.3%)∗

EXT 54.9%†

BoF with SHabs 54.5%
BoF with Spin Images 33.5%

Fig. 5. Results for the 3D shape retrieval on the PSB. Results taken from the literature
are marked with †, results from our own implementations are marked with ∗. Unfortu-
nately, we were not able to exactly reproduce the results given in the literature. This
could be caused by a different initial rendering, which is not discussed in the given
literature.

Fig. 6. Precision recall graph for our approach on the PSB base test set. The results of
our implementation of LFD and SHD reference methods are plotted as lines. We also
compare the BoF results with our SHcorr features compared to the use of the SHabs

features as patch descriptor.
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